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Kant’s Philosophy of Mathematics and the
Greek Mathematical Tradition

Daniel Sutherland

Kant made two intimately related claims that greatly influenced the
philosophy of mathematics: first, mathematical cognition is synthetic a
priori; second, mathematical cognition requires intuition for the con-
tent and the justification of mathematical concepts and propositions.
Kant held that intuitions, like concepts, are a fundamental kind of rep-
resentation. Intuitions belong (at least for humans) to the faculty of
sensibility and represent spatial and temporal properties; concepts
belong to the faculty of understanding. Kant contrasts intuitions and
concepts by claiming that intuitions are singular representations that
relate to objects immediately, while concepts are general representa-
tions that relate to objects mediately, that is, mediated by intuitions
(A320/B376–77, A68/B93).1 It is therefore quite natural that some
recent accounts of Kant’s philosophy of mathematics have focused on
the singularity and immediacy of intuition, and have argued that one
or both play a central role in Kant’s philosophy of mathematics.2 While
not disagreeing with this approach or its fruitfulness, I would like to
propose a very different one: I would like to consider the role of intu-
ition in representing magnitudes, and in particular, the spatially
extended magnitudes of geometrical constructions. Kant’s theory of
magnitudes has been largely overlooked; uncovering it complements
recent work and gives us a more complete understanding of Kant’s phi-
losophy of mathematics. I shall argue that magnitudes are at the heart
of Kant’s theory of mathematical cognition. In particular, I shall argue
that one of the aims of the theory is to explain our cognition of the
mathematical properties of magnitudes, for which intuition is indis-
pensable. 

Kant’s treatment of magnitudes is, I maintain, strongly influenced by
the Greek mathematical tradition. That tradition still had currency in
Kant’s time, allowing Kant to make allusions and tacit references to it.
The best evidence for the influence of the Greek mathematical tradi-
tion is the strong similarity between it and Kant’s own views; I will argue
for the influence by bringing out those similarities. More specifically, I
will argue that Kant attempted to provide an account of the presuppo-
sitions of the Greek conception of magnitudes. I will be emphasizing
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some of the most basic features of Greek mathematics, features that
were entrenched in the time of Euclid and persisted in the mathemat-
ical tradition that descended from it. I will therefore turn to Euclid
when explaining those features of what I will loosely refer to as the
“Greek mathematical tradition” and will not attempt a detailed histor-
ical reconstruction of how the Greek mathematical tradition was
received in Kant’s time.

Before beginning, I would like to make a few general points about
the differences between modern and eighteenth-century mathematics
that may help orient the reader and explain why Kant’s theory of mag-
nitudes has not been fully appreciated. If we think of magnitudes today,
we are apt to think of them as abstract quantities that objects have. For
example, we might think of a walking stick as having a magnitude of
four feet in length, a property it can share with other objects. In con-
trast, Kant thinks of the walking stick as being a magnitude. Kant also
considers a geometrical figure, such as a triangle, and a particular tem-
poral duration as being, and not merely having, a magnitude. Kant
employs several notions of magnitude, but this is the primary notion—
something spatially or temporally extended, particular, and relatively
concrete.3 The Greek mathematical tradition shows this same empha-
sis on concreteness,4 which marks one of many similarities between it
and Kant’s account. The difference between Kant’s concrete notion of
magnitude and the customary understanding of magnitudes today can
obscure Kant’s meaning.

The Greek mathematical tradition also gave priority to geometry
over arithmetic. Painting the Western history of mathematics with a
very broad brush, one can say that the dominance of geometry gradu-
ally waned from the late Middle Ages through the early modern period
but was still influential in the eighteenth century. Numbers gradually
moved to center stage in mathematics, and concrete magnitudes came
to be treated peripherally. This “arithmetization” of mathematics, con-
tinued into the nineteenth century, gradually expanding arithmetic
computation and problem solving to include the real numbers, solidi-
fying the emancipation of algebra from geometry, and encouraging an
abstract understanding of the calculus. It also led to thinking of space
and concrete magnitudes as objects to which numbers can be applied
rather than thinking of space as an independent source of mathemat-
ical knowledge. The conditions of this application are still considered
important today, but applied mathematics is secondary and logically
posterior to the development of the mathematics of real numbers.



KANT’S PHILOSOPHY OF MATHEMATICS

159

Moreover, from a modern point of view, foundations begin with arith-
metic, and hence we may expect that an account of the role of intuition
in mathematical cognition should begin with its role in propositions
such as 5 + 7 = 12. 

For these reasons, it may look to us as if Kant’s references to magni-
tudes are concerned only with the application of mathematics to
objects, and this is how several commentators have treated the Kantian
texts on magnitudes.5 Others have recognized the importance of mag-
nitudes in Kant’s account of mathematical cognition more generally;6

often, however, these accounts focus on Kant’s more abstract notions
of magnitude in an attempt to untangle his difficult views concerning
number and arithmetic.7 I think, however, that Kant is best understood
and explained by focusing first on magnitudes in general and the con-
tinuous spatial magnitudes of geometry in particular, and only then
considering his views on other continuous magnitudes, discrete mag-
nitudes, arithmetic, and algebra. I will therefore leave a detailed of the
latter for another occasion. In this paper, I will argue that the Greek
conception of magnitude is at the heart of Kant’s philosophy of math-
ematics and that intuition is required to represent the fundamental
mathematical properties of those magnitudes.8

The paper has two main parts. Part 1 introduces Kant’s definition of
magnitude, which I claim invokes the Greek conception of mathemat-
ically homogeneous magnitudes. It describes the Greek conception
and points of similarity with Kant’s own. Kant attempts to account for
the mathematical homogeneity of magnitudes by defining what I call
strict logical homogeneity. Part I also explains this notion of homoge-
neity and argues that according to Kant, representing strict logical
homogeneity requires intuition. 

Part 2 connects the two notions of homogeneity: It argues that in
Kant’s view, representing mathematically homogeneous magnitudes
requires representing a strict logical homogeneity in intuition. More
specifically, it argues that Kant wished to account for our cognition of
the properties presupposed by the Greek conception of mathemati-
cally homogeneous magnitudes: the part-whole composition and
equality relations of intuitions. 
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Part 1: Magnitudes, Homogeneity, and Intuition

1. Magnitude in the Critique of Pure Reason

According to Kant, all objects of human experience conform to con-
ceptual and intuitive conditions. The former are imposed by the cate-
gories of the understanding, while the latter are imposed by the pure
forms of sensibility—space and time. The combination of these con-
ceptual and intuitive conditions takes the form of principles to which
all experience must conform; they are articulated and argued for in the
section of the Critique of Pure Reason called the System of Principles. The
first two sections of the System are the Axioms of Intuition and the
Anticipations of Perception. The principle of the Axioms is “All intui-
tions are extensive magnitudes,” and the principle of the Anticipations
is “In all appearances the real, which is an object of sensation, has
intensive magnitude, i.e., degree” (second edition versions; B202,
B207). I will discuss the nature of extensive and intensive magnitudes
below. For the moment, what is important is that Kant calls these prin-
ciples mathematical, by which he does not mean that they are princi-
ples of mathematics, that is, that they are themselves included in
mathematics. They instead play several roles with respect to magni-
tudes and mathematics. First, they articulate principles concerning
magnitudes that are true of any human experience whatsoever. Sec-
ond, they explain why and how mathematics applies to the objects of
human experience. Third, they make the principles of mathematics
possible. The importance of this third role has not always been appre-
ciated, but Kant is relatively clear on this point:9

I will not count among my principles those of mathematics, but will
include those upon which the possibility and objective a priori validity of
the latter are grounded, and which are thus to be regarded as the princi-
ple of these principles [Principium dieser Grundsätze]. (A160/B199)

Kant reiterates his position in the Discipline of Pure Reason, where he
singles out the principle of the Axioms: 

in the Analytic, in the table of principles of pure understanding, I have
also thought of certain axioms of intuition; but the principle that was
introduced there was not itself an axiom, but only served to provide the
principle of the possibility of axioms in general. … For even the possibility
of mathematics must be shown in transcendental philosophy. (A733/
B761)10
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We should therefore expect to learn about the relationship between
concepts, intuitions, and mathematics in these sections of the Critique,
and we should expect magnitudes to be at the heart of the matter.

Kant included various additions and clarifications concerning mag-
nitudes in the second edition of the Critique. At the beginning of the
Axioms, before the argument that all appearances are extensive mag-
nitudes, Kant inserts an argument that all appearances are magnitudes
(simpliciter). That argument includes a definition of magnitude: 

the consciousness of the manifold homogeneous in intuition in general,
insofar as through it the representation of an object first becomes possi-
ble, is the concept of magnitude (Quanti). (B203)

Kant defines a magnitude as a homogeneous manifold in intuition in
general.11 Kant uses the term ‘manifold’ in a wide variety of contexts to
refer to any sort of multiplicity or muchness whatsoever. Homogeneity,
on the other hand, is doing a great deal of work in Kant’s definition.
Kant provides no explanation of homogeneity following his definition;
nonetheless, the notion of a homogeneous magnitude would have
been familiar to Kant’s readers through its role in the Greek mathemat-
ical tradition. An outline of that tradition will help us understand
Kant’s notions of magnitude and homogeneity and will help explain
his account of their relation to mathematics. 

2. The Influence of the Greek Mathematical Tradition on Kant’s
Thought

The Greek conception of homogeneous magnitudes derives from the
theory of proportion, whose development is attributed to Eudoxus and
is known to us through books 5 and 7 of Euclid’s Elements.12 Euclid does
not define magnitude [megathos]. He does, however, use the term to
help pick out the sorts of things that are capable of standing in ratios.
Euclid states: “A ratio is a kind of relation with respect to size between
two homogeneous [homogenon] magnitudes” (bk. 5, def. 3).13 Euclid
has in mind things like lines, plane surfaces, volumes, and numbers;
two lines can stand in a ratio, for example, and the numbers 3 and 73
can stand in the ratio 3:73.14 Thus, lines are homogeneous with lines,
planes with planes, and numbers with numbers. A line cannot stand in
a ratio to a number, just as an area cannot stand in a ratio to a volume:
there is no sense that can be given to the ratio between a particular line
segment and the number 5, just as there is no sense that can be given
to the ratio between an area and a volume.15



DANIEL SUTHERLAND

162

Being capable of standing in a ratio is not quite a criterion for homo-
geneity, however. Euclid leaves open the possibility that two homoge-
neous magnitudes might not stand in a ratio to one another, for he
states that in order to have a ratio each must be capable, when multi-
plied, of exceeding the other (bk. 5, def. 4). Known as the
Archimedean property, it rules out ratios between homogeneous mag-
nitudes if one is infinitesimal or infinitely large with respect to the
other. An infinitesimal line segment, for example, does not stand in a
ratio to a line segment of 3 inches, even though the two line segments
are homogeneous, for no matter how many times the infinitesimal is
multiplied, it will never exceed 3 inches. Although it is not necessarily
the case that homogeneous magnitudes stand in ratios, what is impor-
tant about homogeneous magnitudes is that they are the sorts of things
that can stand in ratios with each other, and do stand in ratios if we set
aside infinitesimal and infinite magnitudes.

We have already seen the way in which homogeneous magnitudes
relate to mathematics: they can stand in ratios, and the study of ratios
belongs to mathematics. The mathematics of ratios is filled out by the
Greek theory of proportions. Homogeneous magnitudes that can
stand in ratios can also stand in proportions, which are defined in
terms of ratios: “Let magnitudes having the same ratio be called pro-
portional” (bk. 5, def. 6). Euclid defines standing in the same ratio as
follows:

Magnitudes are said to be in the same ratio, first to second and third to
fourth, when, equal multiples of the first and third at the same time
exceed or at the same time are equal to or at the same time fall short of
equal multiplies of the second and the fourth when compared to one
another, each to each, whatever multiples are taken. (bk. 5, def. 5)

An anachronistic use of modern algebraic notation helps to bring out
the core idea. For any four magnitudes a, b, c, and d and any two posi-
tive integers m and n

a:b = c:d iff for all m, n:
ma > nb → mc > nd
ma = nb → mc = nd
ma < nb → mc < nd.

In other words, one pair of magnitudes stands in the same ratio as
another if the comparative size of the first pair is the same as the com-
parative size of the second pair under all equimultiple transforma-
tions.16 The definition of sameness of ratios allows that two pairs of
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magnitudes can stand in the same ratio even if the pairs are inhomo-
geneous with each other; that is, the magnitudes a and b must be homo-
geneous with each other, as must c and d, but a and b need not be
homogeneous with magnitudes c and d. For example, two lines can
stand in the same ratio as the numbers 1 and 5 and in the same ratio as
the areas of two triangles. Proportions are useful and powerful in part
because they allow us to make claims that relate ratios of different kinds
of magnitudes.

Books 5 and 7 of the Elements establish sixty-four propositions con-
cerning the ratios and proportions of magnitudes, which include laws
governing the ratios between magnitudes under the operations of
addition and subtraction, the alteration of terms of ratios, and the
addition and subtraction of proportions. These laws are paradigm
mathematical laws. They govern the addition and subtraction of num-
bers, as well as the composition and decomposition of other magni-
tudes, such as spatial magnitudes. They are therefore more general
than the axioms and definitions of geometry, while making an impor-
tant contribution to it. The mathematical nature of these laws is clear
if one considers modern algebraic equivalents of two propositions.
Book 5 proposition 1 entails that if magnitudes ma, mb, and mc each
consist of m elements of magnitudes a, b, and c respectively, then ma +
mb + mc = m (a + b + c). Book 5 proposition 18 states that if a:b = c:d, then
(a+b):b = (c+d):d.17 In short, the Greek theory of ratios and proportions
makes explicit many of the mathematical laws to which magnitudes
conform, laws that are implicit in the common notions, definitions,
and assumptions about magnitudes.18 I will refer to the totality of those
mathematical laws as the “mathematical character” of magnitudes and
to the homogeneity of such magnitudes as “mathematical homogene-
ity.” The Greek mathematical tradition incorporated this understand-
ing of the relation between homogeneous magnitudes and
mathematics.

Kant’s reference to homogeneous magnitudes invokes this aspect of
the Greek mathematical tradition, and Kant holds that the theory of
ratios and proportions is of central importance. For example, in a let-
ter to Johann Schultz in 1788, Kant states

 Universal arithmetic (algebra) is such an ampliative science that one can
name none of the rational sciences that are equal to it in this respect; in
fact, the remaining parts of pure mathematics expect their growth in
large part from the amplification of that universal doctrine of magnitude
[Größenlehre]. (10:555)
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For Kant, universal arithmetic (algebra) concerned the ratios between
magnitudes.19 Thus, Kant simultaneously stresses the importance of
the theory of ratios in mathematics and describes it as a universal doc-
trine of magnitudes.

Kant also singles out Euclid’s theory of magnitudes in an announce-
ment of the program of his lectures for 1765–66. Instead of citing
Euclid as an authority on propositions of geometry, as one might
expect, Kant cites him as an authority on the doctrine of magnitudes
[Größenlehre] (2:307). Kant was not alone in his regard of the Euclid-
ean theory of ratios and its importance for all of mathematics. Wolff,
for example, in his entry for Ratio in his Mathematisches Lexicon (1716,
1170) refers to Euclid’s theory of ratios as “indeed the soul of the whole
of Mathematics [doch die Seele der ganzen Mathematick].”20

The affinity between the Greek mathematical tradition and Kant’s
own views should be apparent. The Axioms of Intuition and the Antic-
ipations of Perception contain Kant’s explanation of both the applica-
bility of mathematics to objects of experience and the possibility of all
mathematical principles. Kant’s account rests on magnitudes and their
homogeneity and reflects the Greek conception of mathematically
homogeneous magnitudes—a conception that formed an influential
part of the intellectual heritage in Kant’s time. Book 5 of Euclid’s Ele-
ments, which was widely available and read in Kant’s day, made this part
of the Greek mathematical tradition familiar to Kant’s contemporar-
ies.21 The Greek conception would have been foremost in the minds of
his contemporary readers, making it overwhelmingly likely that Kant is
invoking it in his own account.22

3. Kant on the Representation of Strict Logical Homogeneity

Because the Greek conception of mathematically homogeneous mag-
nitudes shaped Kant’s understanding of mathematics, it also set the
framework for Kant’s views on mathematical cognition. In order to
explain the epistemic conditions underlying the Greek conception of
mathematical homogeneity, Kant appealed to a different kind of
homogeneity, one defined relative to human cognition; it is closely
related to a notion of homogeneity that belonged to logic and the
study of concepts in Kant’s time. Two concepts or things are homoge-
neous with respect to a concept if they both fall under that concept. For
example, the concept of a Clydesdale and the concept of a Shetland
are homogeneous with respect to the concept horse.23 I will call this
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“logical homogeneity.” In the logic of Wolff and his followers as well as
in Kant, concepts can be ordered into a genus-species hierarchy. Con-
cepts or things can be more or less logically homogeneous with each
other depending upon how general the common concept under which
they fall is, and hence logical homogeneity comes in degrees. For
example, a Clydesdale is more homogeneous with a Shetland than it is
with a jaguar.

Kant uses the notion of logical homogeneity in his defense of a prin-
ciple of reason concerning the systematic unity of experience, a prin-
ciple of the homogeneity of forms (A651–63/B679–91). It was also
commonly thought to be a requirement of counting that the objects
counted fall under a common concept.24 More importantly, however,
Kant uses a version of logical homogeneity to relate mathematical
homogeneity to our cognitive abilities. 

In his lectures on metaphysics, Kant uses logical homogeneity to
contrast a quantum with a compositum. In the Axioms, he distinguishes
between two sorts of magnitude, quanta and quantitas; the former is a
concrete magnitude, the latter a more abstract counterpart. While the
distinction is crucial elsewhere, it is not crucial for our present point,
and quanta can be taken for now to be synonymous with magnitude.25

Kant states that both a quantum and a compositum contain a plurality,
but a compositum allows for an aggregate of heterogeneous parts, while
a quantum requires homogeneity among the parts. Kant articulates the
homogeneity requirement of quanta as follows:

Homogeneitatem, i.e. things from one and the same genus (genus) [Gattung
(genus)], hence compositum differs from quantum, and the many would in
that case be able to be a variety [varietaet], every quantum contains a mul-
titude [Menge] but not every multitude is a quantum; rather, it is only
when the parts are homogeneous. (29:990, 1794–95)

Thus, a quantum requires that the manifold at least be logically homo-
geneous. 

Kant next explains his use of genus and species in this context. He
introduces the terms quiddity, quality, and quantity, corresponding to
a once familiar trio of questions one can ask about a thing: What? What
sort? How much? The contrast between quiddity and quality turns on
specific differences:

Quidditas, if one wants to put it that way, would be distinguished from
quality as the determination of genus and the specific difference; e.g.,
quiddity the genus of which is essence: but whether it is hard or soft belongs
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to quality, therefore in regard to species conceived under the genus.
(29:991, 1794–95)

Quiddity consists of the genus and the specific difference that together
define the essence, while quality concerns further specific differences.
Kant goes on to contrast quality and quantity:

quality differs from quantity in that, and to the extent that, the [former]26

indicates something in the same object which is inhomogeneous [unglei-
chartiges] with regard to other determinations found in it. Therefore
quality is that determination of a thing according to which whatever is
specifically different finds itself under the same genus, and can be distin-
guished from it. This is heterogeneous [heterogen] in contrast to that
which is not specifically different, or to the homogeneous [homogen].
(29:992, 1794–95)27

Qualities are specifically different characteristics, and these specific dif-
ferences are heterogeneous to each other. Quantity, in contrast, does
not even allow specific differences, and the lack of specific difference
is called homogeneity (see also 29:839, 1782–83). In short, qualitative
differences are heterogeneous, and the homogeneous excludes any
qualitative difference at all. I will call the logical homogeneity that
excludes all qualitative difference “maximum” or “strict” logical homo-
geneity.

In further notes from his lectures, Kant explains the notion of strict
logical homogeneity in terms of numerical difference. We have seen
that the distinction between quiddity, quality, and quantity corre-
sponds to generic and essential specific difference, mere specific dif-
ference, and the not-even-specifically different. Kant claims in other
lectures on metaphysics that all difference is generic, specific, or
numerical (28:422, 1784–85; 28:561, 1790–1). He adds in one lecture
that “two drops of water on 2 needle points are numerically different
and specifically identical” (28:422, 1784–85). Kant elaborates on the
notion of numerical difference in a lecture on metaphysics most likely
delivered in the decade of the Critique:

The concept of a man [Mann] is already more closely determined than
the concept of a human [Menschen]; that is the case in relation to every
genus and every species, in which this species can again become a genus
with respect to another species. The genus differentiates itself from a spe-
cies, in so far as different species can be contained under a genus. These
under a genus are called inferior concepts [conceptus inferiores] and their
difference is specific difference [differentia specifica]. If this species cannot
itself again be regarded as a genus, then it is a lowest species [species infi-
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mae] and the difference of multiple [mehrerer] lowest species is numeri-
cal difference [Differentia numerica]. (28:504, late 1780s)

There are two points here. First, a concept’s status as either a genus or
species depends upon whether it is viewed in relation to a concept that
falls under it or in relation to a concept under which it falls. Thus, con-
cepts represent both generic differences of quiddity and specific differ-
ences of quality, and both quiddity and quality can be described more
broadly as specific differences. Second, an infima species is a concept
under which no further concepts can fall, and hence is a species but
not a genus. Numerical difference is difference even where no further
specific difference is possible.28

Kant’s position implies that a quantum differs from a compositum in
being homogeneous, that being homogeneous corresponds to quan-
tity, and that homogeneity requires specific identity with numerical
diversity. Kant is explicit about this result. 

Homogeneity is specific identity with numerical diversity [numerischen
Diversitaet], and a quantum consists of homogeneous parts [partibus
homogeneis]. (28:504, late 1780s)

Quanta, that is, concrete magnitudes, exhibit maximal logical homoge-
neity, that is, the parts are specifically identical yet numerically diverse. 

What is crucial here is that in Kant’s view, concepts on their own can
only represent qualities, that is, specific differences; they cannot repre-
sent bare numerical difference. In contrast, intuition can represent
bare numerical difference. Hence, intuition makes it possible to repre-
sent a strictly homogeneous manifold. Furthermore, Kant explicitly
ties the definition of strict logical homogeneity to the mathematical
homogeneity of concrete magnitudes (quanta). Hence, concepts alone
cannot represent concrete magnitudes, while intuition makes it possi-
ble to represent them.29

Since the only forms of intuition for us are space and time, the argu-
ment so far establishes that space or time make it possible for us to rep-
resent magnitudes. Space and time, however, are not the only kinds of
magnitudes or the only strictly homogeneous manifolds there are.
Kant also holds that an intensive magnitude, such as the intensity of a
light, is a magnitude and contains a strict logical homogeneity. Never-
theless, Kant holds that we cannot even represent an intensive magni-
tude as a magnitude at all (as containing a homogeneous manifold at
all) without the aid of space or time. (I will discuss intensive magni-
tudes in more detail in section 6 below.)30 Consequently, intuition is
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not just a sufficient condition for representing magnitudes; it is a nec-
essary condition. Kant holds that concepts alone cannot represent con-
crete magnitudes and that intuition is required to represent them.

So far, I have explained Kant’s conception of magnitude and argued
that Kant’s understanding of mathematics is strongly influenced by the
Greek conception of magnitudes. Under the influence of the Greek
mathematical tradition, Kant thinks that magnitudes are at the basis of
mathematics and the mathematical character of experience, and as a
consequence he thinks that our representation of magnitudes is at the
heart of mathematical cognition. I have also shown why Kant thinks
intuition is required to represent magnitudes and hence is required for
mathematical cognition: intuition is required to represent a strict log-
ical homogeneity, that is, a bare numerical difference. Nevertheless,
Kant’s argument does not explain what strict logical homogeneity has
to do with mathematical homogeneity in the Greek sense, and hence
with mathematics. I will take up this issue in part 2. First, however, I will
give further evidence for our results so far. 

4. Numerical Diversity, the Limitations of Conceptual Representa-
tion, and Intuition

The argument I have outlined turns on the limitations of conceptual
representation and the role of intuition in overcoming them. Since I
have uncovered the argument using works that were not published by
Kant, confirmation from Kant’s published writings would be welcome.
The Amphiboly of Pure Reason in the Critique provides it.

In the Amphiboly, Kant attacks Leibniz’s principle of the identity of
indiscernibles, which claims that two completely indiscernible individ-
uals are identical. According to Leibniz, 

[t]here is no such thing as two individuals indiscernible from each other.
… Two drops of water, or milk, viewed with a microscope, will appear dis-
tinguishable from each other. (1969, 700)

Despite Leibniz’s claim that two drops of water or milk can be distin-
guished through a microscope, his point is not that there will always be
differences among individuals that we can empirically verify. Leibniz
believes in an underlying rational order of the universe that reflects
God’s intellect. He believes that there must be a sufficient reason for
every fact, and that all reasons correspond to subject-predicate rela-
tions between concepts. Leibniz’s point in this passage is that God, if no
one else, can always distinguish any two individuals by their qualities,
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no matter how similar they may appear to be, so that in principle, dis-
tinct individuals are always conceptually distinguishable. Leibniz’s
position, as Benson Mates puts it, is that

God’s concepts … are fine-grained enough to distinguish each individual
from all the others. It is obvious that by virtue of their accidents, any two
individuals will fall together under a very large number of concepts, that
is, will have a large number of attributes in common. But the principle
assures us that however similar they may be, there will always be some con-
cept under which one of them falls and the other does not. (Mates 1986,
135)

Leibniz’s position can be recast in Kantian terms: between distinct indi-
viduals there are always specific differences that can be represented
conceptually. It is this claim that Kant attacks in the Amphiboly. Kant
claims that the role of intuition in our cognition allows for numerical
difference even when two objects are conceptually indistinguishable:

However identical everything may be in regard to [the comparison of two
objects in respect of their concepts], the difference of the places of these
appearances at the same time is still an adequate ground for the numeri-
cal difference of the object (of the senses) itself. Thus, in the case of two
drops of water one can completely abstract from all inner difference (of
quality and quantity), and it is enough that they be intuited in different
places at the same time in order for them to be held numerically differ-
ent. (A263–64/B319–20)

Kant reverses Leibniz’s claim concerning two drops of water, and
argues that if we abstract from all inner qualitative and quantitative dif-
ferences, their simultaneous location in different regions of space is
sufficient to ground their (discrete) numerical diversity.

Kant diagnoses the source of Leibniz’s error as a misunderstanding
of the nature of human cognition. Leibniz, he claims, fails to recognize
that we have a faculty of sensibility with its own distinctive kind of rep-
resentation, namely, intuition. Leibniz believes we only have concep-
tual representations, the sort that belong to the intellectual faculty, and
that sensation is but a confused form of conceptual representation.
According to Kant, Leibniz in effect assimilates intuitive representa-
tion into his model of conceptual representation. Since Leibniz thinks
that objects of experience are cognized only through the understand-
ing, all representation is of a fundamentally conceptual nature. Hence,
the difference between any two individuals can only be represented
conceptually as a specific difference, a difference in quality.
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Leibniz took the appearances [i.e., objects of sensibility] … for intelligi-
bilia, i.e., objects of the pure understanding … and on that assumption his
principle of the identity of indiscernibles … certainly could not be dis-
puted. But since they are objects of sensibility … plurality and numerical
difference are already given us by space itself. … For one part of space,
although completely similar and equal to another part, is still outside the
other and for this very reason is a different part from that which abuts it to
constitute a greater space. (A264/B320)

Space, the form of the faculty of sensibility, is a source of plurality and
numerical difference, and can give numerical diversity to specifically
identical individuals.

Our interest is not in whether his argument against Leibniz is fair or
his diagnosis correct, but in Kant’s claim that if objects of experience
were objects of understanding alone, then the principle of the identity
of indiscernibles would hold (see also A272/B328). In other words, if
the only means for us to represent objects were conceptual, then we
could not represent specific identity with numerical diversity. Further-
more, it is intuition that allows us to overcome this limitation of con-
ceptual representation.31 Thus, intuition is required to represent strict
logical homogeneity. 

The Amphiboly reinforces the claim that intuition is required to rep-
resent bare numerical difference and supports the argument given at
the end of section 3. Nevertheless, we have not yet seen what strict log-
ical homogeneity has to do with mathematical homogeneity and hence
mathematics. The remainder of this paper focuses on that explanation. 

Part 2: Composition, Parts and Wholes, and Equality

Part 2 will argue that Kant aimed to explain the presuppositions under-
lying the Greek conception of magnitudes. It is more reconstructive,
and the evidence for it is less direct than that for part 1. Kant does not
explicitly articulate his aims, at least in part because the Greek mathe-
matical tradition was familiar to his contemporaries. The strongest evi-
dence is based on an examination of the cognitive presuppositions of
the Greek conception (section 5) and an analysis of Kant’s account of
those presuppositions (sections 6–8). The following analysis reflects
the way those presuppositions might appear to someone strongly influ-
enced by the Greek mathematical tradition rather than the way they
might appear to us today. 
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5. Presuppositions of the Greek Conception of Magnitudes

As explained above, the Greek conception of the mathematical char-
acter of magnitudes rests on the fact that homogeneous magnitudes
stand in ratios, and magnitudes are said to have a ratio to one another
that are capable, when multiplied, of exceeding one another (book 5,
def. 4). The Greek notion of ratio is in turn based on the presumption
that magnitudes can be composed of multiples of other magnitudes,
and stand in relations of smaller, equal, and larger. The definition of
sameness of ratio—that is, being in proportion—makes the same pre-
sumptions: having the same ratio requires that the relations of smaller,
equal, and larger be invariant under all equimultiple compositions.
These presumptions are found throughout books 5 and 7, and are
exemplified by book 5, proposition 1, cited above: if magnitudes ma,
mb, and mc each consist of m elements of magnitudes a, b and c, respec-
tively, then ma + mb + mc = m (a + b + c).32

The multiplication of magnitudes assumes that the composed mag-
nitudes are not only disjoint but equal; however, composition out of
equal parts is simply a special case of composition. Composition of a
whole magnitude out of possibly unequal parts is exemplified by book
5, proposition 18, cited above: if a:b = c:d, then (a+b):b = (c+d):d. In gen-
eral, the composition of magnitudes and the part-whole relations
between the parts and the wholes they compose are fundamental to
Greek mathematics.

Because Euclid introduces the notion of homogeneous magnitudes
in the definition of ratio, and two magnitudes having a ratio is defined
by appeal to composition, what counts as mathematically homoge-
neous in the Greek sense depends directly upon the understanding of
what can be composed. In fact, the notions of homogeneity and com-
position are interdependent.33 A closer look at the Greek notion of
composition will fill out their notion of mathematical homogeneity.

Composition is not just any sort of putting together of magnitudes;
it is a putting together of homogeneous magnitudes that yields more of
the same kind, that is, it yields something homogeneous with the com-
posed magnitudes while being more than the composed magnitudes.
There are two important restrictions on this Greek notion of composi-
tion. First, there is no sense in which one can compose inhomogeneous
magnitudes. A line and a plane, for example, cannot be composed
together. One can draw a line intersecting a plane, but that does not
count as a composition of the two.34 Second, homogeneous magni-
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tudes cannot be composed in such a way as to yield a magnitude inho-
mogeneous with them. For example, a line segment can be composed
with another line segment only in such a way as to yield a longer line
segment; there is no way to compose them in such a way that yields a
point, plane, or solid. Reflection on some disallowed cases is helpful in
understanding this restriction. One might, for example, “construct” a
point as the intersection of two lines and count that as “composition”
of the point. This would not count as composition in the Greek sense,
however. Another case is perhaps more in keeping with the meaning of
composition: one might think that lines could compose a square or
cube by outlining these figures. This also would not count as composi-
tion in the Greek sense; while the lines can be so composed, the square
or cube are only delimited, not “composed” out of them—that is, the
parts of the lines do not constitute or make up the enclosed volume.
Finally, one might think that parallel lines could compose a plane. In
the Greek view, however, lines have no width, and no amount of com-
position of this sort will yield any width and hence a plane.35

These are descriptions of what composition does not include. The
restrictions are a reflection of a positive view of composition, intended
to capture the idea that certain things of the same sort can, when put
together, yield more of the same kind of thing. Two regions of space, for
example, can compose a larger space. Common notion 5 of the Ele-
ments states that the whole is greater than its parts, and this was held to
be true of a whole composed of homogeneous parts.36 The important
point is that composition yields magnitudes that are larger and never-
theless homogeneous with what one started.37

This notion of composition underlying the Greek theory of propor-
tions also underlies measurement. On the most basic understanding,
measuring requires that we be able to compose multiples equal to
some magnitude taken as a unit and that we be able to make compar-
ative judgments between the measure and the measured.38 Thus, in
the Greek mathematical tradition, the mathematical properties of
magnitudes and our ability to apply numbers to magnitudes in mea-
surement rest upon the same minimal assumptions.39

So far, I have focused on the presuppositions of the Greek concep-
tion of magnitudes that are more or less explicit in Euclid: composi-
tion, part/whole relations, and comparative relations of less than,
equal to, and greater than. We can reduce the number of presupposi-
tions, since less and greater can be defined by stipulating that one mag-
nitude is less than another if the first is equal to a proper part of the
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second, and greater than it if the second is equal to a proper part of the
first.40 Thus, on a rather straightforward analysis, the Greek theory of
ratios and proportions is fundamentally mereological: the minimal
basis assumed by the Greek theory of ratios and proportions is that
mathematically homogeneous magnitudes can stand in part-whole
composition relations and the equality relation.

These minimal assumptions can also be viewed from an epistemo-
logical standpoint. Our cognition of the mathematical character of
magnitudes depends, at a minimum, on our ability to make judgments
about the part-whole composition of homogeneous magnitudes and
our ability to make judgments of equality between homogeneous mag-
nitudes. The remainder of part 2 will argue that Kant’s theory of math-
ematical cognition attempts to account for these presuppositions. I will
do so by arguing that in Kant’s view intuition is required to cognize the
part-whole composition of magnitudes. 

6. The Part-Whole Composition of Magnitudes

Kant defines and distinguishes extensive and intensive magnitudes
using the part-whole relation. Kant defines extensive magnitude as that
magnitude “in which the representation of the parts makes possible
the representation of the whole (and thus necessarily precedes it)”
(A162/B203). The paradigm example of an extensive magnitude is a
determinate region of space—that is, a region of space such as a line,
a circle or a cube. In contrast, an intensive magnitude contains a man-
ifold, but the apprehension of it “does not proceed from the parts to
the whole” (A168/B210).41 A paradigm example of an intensive mag-
nitude is the intensity of a light. Kant holds that because the apprehen-
sion does not proceed from the parts to the whole, we apprehend it as
a unity. Kant’s point is that in apprehending an intensive magnitude,
we do not directly represent its part-whole structure. We do not, for
example, apprehend various degrees of intensity of a light, only its total
intensity. In contrast, whenever we apprehend an extensive magnitude,
we also apprehend its part-whole relations. I cannot, for example,
apprehend a determinate region of space without thereby apprehend-
ing its parts.42

Extensive magnitudes play the leading role in Kant’s philosophy of
mathematics. Kant states of the principle of the Axioms, which con-
cerns extensive and not intensive magnitudes, that it 
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greatly extends our cognition. For it is that alone, which makes pure
mathematics in its entire precision applicable to the objects of experi-
ence. (A165/B206)

Kant holds that because the representation of an intensive magnitude
is of a unity, we can apprehend its part-whole structure only indirectly,
with the aid of extensive magnitude. In fact, we depend upon extensive
magnitudes to represent them as containing a strictly homogeneous
manifold, and hence to represent them as magnitudes at all. We
become aware that an intensive magnitude is a strictly homogeneous
manifold by representing the intensity of a light, for example, dimin-
ishing down to zero, or increasing from zero up to a given intensity
(B208, A168/B210). Thus, the manifoldness and the part-whole struc-
ture of the intensity of a light reveals itself only by representing the
parts of that manifold by means of the extensive magnitude of time.
Extensive magnitudes play a leading role in Kant’s philosophy of math-
ematics precisely because they manifest their part-whole structure in a
way that makes that part-whole structure cognitively accessible. The
most important property of magnitudes, after homogeneity, is their
part-whole structure.43

Kant does not directly discuss the concepts of part and whole in the
Critique or other published work. Nevertheless, Kant’s lectures on meta-
physics and his notes reveal two important features of Kant’s views on
the part-whole relation. First, the part-whole relation corresponds to
the categories of quantity outlined in the Critique. Second, the homo-
geneity of intuition is required not only to represent magnitudes, but
also to represent the part-whole composition of magnitudes. 

The connection between part-whole relations and the categories of
quantity—unity, plurality, and totality—are reflected in the develop-
ment of Kant’s critical philosophy. Alexander Baumgarten, a student of
Wolff, wrote a metaphysics text that Kant used for many years in his lec-
tures. Kant repeatedly worked through this Leibnizian-Wolffian meta-
physics, considering and reconsidering the fundamental concepts
upon which it was built; his evolving views are revealed in student lec-
ture notes, Kant’s notes in his Baumgarten text, and various other
notes (see 17:1–745). Kant discusses various pairs and triplets of con-
cepts and their relations, but none so frequently as one-many-one. His
discussions show that he thought of these concepts as corresponding to
the concepts of unity-plurality-totality and to the concepts of part and
whole. The three categories correspond to the part-whole relation by
giving us the concept of the unity of a part, the plurality of parts, and
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the totality of parts in a whole. In a metaphysics lecture delivered in
1784–85, for example, Kant explicitly states that the concept of part
and whole stands under the categories of quantity (28:423; see also
29:803, 1782–83; 28:504–5, late 1780s). Thus, the three categories of
quantity allow us to cognize part-whole relations.44

More specifically, these categories allow us to cognize the part-whole
relations of magnitudes. Kant describes the part-whole relations of
magnitudes using the categories, as in this passage from the Critique of
Judgment:

That something is a magnitude (quantum) can be cognized from the
thing itself without all comparison with another: if, namely, a plurality of
the homogeneous together makes a unity. (5:248).

This role for the categories of quantity is further confirmed by the
way in which Kant refers to them. In Kant’s account, after homogeneity
the most important property of magnitudes is their part-whole compo-
sition. Kant often refers to the categories of quantity as the categories
of magnitude or the category of magnitude (B115, B162, B193,
B201).45

The role of the categories of quantity supports the view that Kant’s
approach to mathematics is markedly different from our modern set-
theoretic approach. Kant’s is fundamentally mereological—another
way in which Kant’s account follows the Greek mathematical tradition
found in Euclid. 

So far, we have established that the categories of quantity allow us to
cognize the part-whole relations of magnitudes. As we saw in part 1, it
follows from Kant’s definition of magnitude and his definition of
homogeneity that the representation of magnitudes requires intuition.
Kant also holds that intuition is required for the representation of the
part-whole composition of magnitudes. A good number of the notes in
which Kant discusses the one-many-one and unity-plurality-totality con-
cepts also concern the role of intuition. For example, lecture notes
from a course on metaphysics state the following:

The concept of magnitude is properly characteristic of understanding [zu
dem Verstand gerade zu eigen] because it concerns itself with the connec-
tion of the manifold homogeneous [mannigfaltige gleichartigen]. Magni-
tude [Größe] is employed in mathematics through the help of a pure
intuition in sensibility, i.e., through the form of space and time in the
determination of each figure or number. But in philosophy it cannot be
determined from the concept alone whether the category of magnitude
[Größe] has objective reality. I.e., it cannot be cognized that many
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together constitute a one [daß Vieles zusammen Eins ausmache].
(29:992, 1794–95)

This passage, which concerns the role of magnitudes in mathematics,
states that intuition allows us to establish the objective reality of the cat-
egory of magnitude, that is, allows us to cognize that a many constitutes
a one. In other words, intuition allows us to cognize that parts compose
a whole. Kant’s point is that there is a special sort of composition par-
ticular to the part-whole relations of magnitudes, and that intuition is
required in order to cognize this composition.46

For humans, the two forms of intuition are space and time, so it is
not surprising that Kant considered the role of each in representing
the relations between parts and wholes. For example, Kant entertained
the view that the temporal act of drawing a line successively represents
the parts of a line, while the spatial figure of the line simultaneously
represents all those parts, and hence represents them as coexisting in
a whole.47 In several important passages of the Critique, Kant refers to
drawing a line in thought through a figurative synthesis. These pas-
sages are evidence of Kant’s kinematic conception of mathematics, to
which he appeals in response to problems in the foundations of the cal-
culus.48 Kant’s suggestion about the particular roles of space and time
would neatly unify his views on the part-whole relations of mathemati-
cally homogeneous magnitudes and his kinematic conception of math-
ematics. Regardless whether Kant was committed to these particular
roles for space in time in representing part-whole relations, which I
think quite possible, he often mentions the role of space and time in
simply representing homogeneous parts:

the category of magnitude [Größe], as a homogeneous many that
together constitutes [ausmacht] one; this cannot be grasped without
space and time. (29:979)

Space and time allow us to grasp the category of magnitude by allowing
us to grasp that a homogeneous many together constitute a one, that is,
that the homogeneous parts constitute a whole. A note Kant wrote in
the margin of the Axioms of Intuition (in his copy of the first edition
of the Critique) emphasizes that the important property of space and
time is their homogeneity:

We can never take up a manifold as such in perception without doing so
in space and time. But since we do not intuit these for themselves, we
must take up the homogeneous manifold in general in accordance with
the concepts of magnitude. (23:29)
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The Critique provides further important evidence that intuition plays a
role in representing the composition of magnitudes. As mentioned in
section 1, Kant calls the Axioms of Intuition and the Anticipations of
Perception mathematical principles. In the second edition, Kant
added a footnote to further explain what makes these principles rele-
vant to mathematics. He delineates various sorts of synthesis or combi-
nation [Verbindung]; the combination at the root of the mathematical
principles is composition [Zusammensetzung] (B201 n. 1, 4:343).49

This special act of synthesis is employed only in the representation of
magnitudes, and its distinguishing feature is that it synthesizes a homo-
geneous manifold:

All combination (conjunctio) is either composition (compositio) or con-
nection (nexus). The former is the synthesis of a manifold of what does
not necessarily belong to each other, as e.g. the two triangles into which a
square is divided by the diagonal do not of themselves necessarily belong
to each other, and of such a sort is the synthesis of the homogeneous in
everything that can be considered mathematically. (B201 n. 1)

The synthesis of composition of a strictly logically homogeneous man-
ifold generates our representations of magnitudes.50 This and previous
passages show that by representing a strictly logically homogeneous
manifold, intuition makes possible a special synthesis of composition
underlying our cognition of “everything that can be considered math-
ematically.” 

We saw in the previous section that in the Greek tradition, the notion
of composition and the notion of mathematically homogenous magni-
tudes are interdependent. We have established that in Kant’s view,
there is a fundamental connection between his notion of strictly logi-
cally homogeneous magnitudes and composition, and that this compo-
sition underlies mathematical cognition. The parallel is too striking to
be accidental, and provides mounting evidence that Kant’s approach
to mathematical cognition is fundamentally shaped by the Greek math-
ematical tradition. But what is the connection between strict logical
homogeneity and the Greek mathematical homogeneity? Stated differ-
ently, what does Kant think is special about the composition of a strict
logical homogeneity, and what does it have to do with mathematics? 

7. Intuition and the Composition of Magnitudes

Kant’s understanding of intuition’s role in the representation of com-
position is best brought out by contrasting it to Kant’s understanding of
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conceptual representation. In Kant’s view, the intension of a concept
consists of any constituent concepts it has; the concept ‘human,’ for
example, might contain the concepts ‘animal’ and ‘rational.’ Kant calls
constituent concepts ‘partial’ concepts [Teilbegriffe], and the relation
between a concept and its partial concepts is that of whole to part.
Kant’s notion of intension is familiar, but his notion of extension is not.
In the modern view, an extension consists of the objects that fall under
a concept. Kant holds that objects fall under concepts, but he also
holds that concepts fall under concepts, and in his lectures on logic,
Kant describes the logical extension of a concept as the concepts that
fall under a concept (9:98). The concept ‘human’, for example, is part
of the extension of the concept ‘animal’. The part-whole relation
between concepts and their intensions is reciprocal to that between
concepts and their extensions; the concept ‘animal’ is part of the inten-
tion of the concept ‘human’ if and only if the latter is part of the exten-
sion of the former. 

As explained in section 3 above, Kant holds that concepts represent
qualitative differences, that is, specific differences. If we combine the
concept ‘rational’ with the concept ‘animal’, we generate a more spe-
cific concept and restrict the extension of the concept ‘animal’ to a
smaller extension. We also saw that in Kant’s view, concepts can repre-
sent only qualitative differences; hence, the combination of unique
concepts always results in ever more specific concepts and ever smaller
extensions. There is no room in this theory for acombination of con-
cepts that would yield the representation of more than what the constit-
uent concepts represent. 

In contrast, the composition of a strictly logically homogeneous
manifold, of bare numerical difference without specific difference,
yields more of the same. Kant makes the importance of this property of
intuition clear in a passage from the Amphiboly already cited: 

Leibniz took the appearances [i.e. objects of sensibility] … for intelligi-
bilia, i.e., objects of the pure understanding … and on that assumption his
principle of the identity of indiscernibles … certainly could not be dis-
puted. But since they are objects of sensibility … plurality and numerical
difference are already given us by space itself. … For one part of space,
although completely similar and equal to another part, is still outside the
other and for this very reason is a different part from that which abuts it
[zu ihm hinzukommt] to constitute a greater space. (A264/B320)

Kant states that parts of space are numerically different while being
similar and equal, and then adds that adjoining parts of space together
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constitute a greater space. This latter property is not directly relevant to
the point of his argument, which is that space allows the representation
of bare numerical difference. Kant mentions it because he thinks that
the compositionality property of space is intimately tied to bare numer-
ical difference.

Kant holds that the composition of parts that have strict logical
homogeneity results in a whole that is greater than those parts. Con-
cepts on their own, no matter how they are combined, do not allow the
representation of this kind of part-whole composition. And it is exactly
this sort of composition that Kant thinks is characteristic of “that which
can be considered mathematically.” Without the representation of this
sort of combination, mathematical cognition would not be possible at
all.51

The inability of concepts to represent mathematical composition
can be brought out in another way. As discussed in section 4 above,
Kant claims that if objects were objects of understanding alone and
hence represented only by means of concepts, then Leibniz’s principle
of the identity of indiscernibles would hold. Kant uses this hypothetical
to bring out the limitation of conceptual representation. If we
attempted to use only concepts to represent the composition of strictly
homogeneous units of space into a larger space, we would have to rep-
resent each of the spaces as instances of one and the same concept,
such as the concept ‘cubic foot’. In that case, however, each instance of
the concept would be indistinguishable and hence identical, which
means we could at best succeed in repeatedly picking out one and the
same object. Kant makes this point in What Progress has Metaphysics Made
Since the Time of Leibniz and Wolff?

According to mere concepts of the understanding, it is a contradiction to
think of two things outside of each other that are nevertheless fully iden-
tical in respect of all their inner determinations (of quality and quantity);
it is always one and the same thing thought twice (numerically one).
(20:280, cf. A263/B319 and A282/B338)

In other words, concepts alone cannot represent pure numerical diver-
sity, and our attempt at representing distinct spaces collapses into rep-
resenting just one. As Kant puts it, conceptual representation alone
would “bring the whole of infinite space into a cubic inch and less”
(20:282). Since concepts alone cannot represent the bare numerical
diversity of mathematical composition, we must rely on intuition. 

Kant’s views on the nature of intuitive and conceptual representa-
tion forge a link between strict logical homogeneity and Greek mathe-
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matical homogeneity. Both are closely tied to the special sort of
composition that, according to the Greek mathematical tradition,
underlies mathematics. A strict logical homogeneity is required to rep-
resent that composition, and hence intuition is required for mathemat-
ical cognition.52

8. Part-Whole Composition, Equality, and the Mathematics of Magni-
tudes

Part 1 established that Kant thought that intuition is required to rep-
resent magnitudes, and now we have seen why Kant thinks it is required
to represent their mathematical properties. There is nevertheless more
to the mathematical character of magnitudes than simply being com-
posable into more of the same kind. If Kant aims to account for our
mathematical cognition by accounting for our cognition of magni-
tudes, one would like to know how he would account for these further
mathematical properties. 

Kant holds that a whole is greater than its parts.53 A composed mag-
nitude will therefore be larger than any of its parts, which imposes an
ordering on magnitudes. This ordering is severely limited in two ways,
however. First, it will order magnitudes only in relation to fully con-
tained parts; it establishes that a magnitude is smaller than a second
magnitude of which it is a fully contained part, that the second magni-
tude is smaller than a third of which it is a fully contained part, and so
on. It does not, however, order the relative sizes of magnitudes that are
disjoint or partially overlapping; the ordering based on part-whole
composition is a partial rather than a total ordering restricted to full
part-whole containment. Second, even within the partial ordering of
parts and subparts, all that is established is that one magnitude is larger
than another; the ordering does not determine how much greater the
whole is than any of its parts. It does not, for example, determine
whether one magnitude is twice as large as one of its parts or whether
the two magnitudes stand in some other ratio.54 Thus, the part-whole
composition relation of a strict logical homogeneity falls far short of
establishing the kinds of relations between magnitudes that are estab-
lished in books 5 and 7 of Euclid’s Elements.

As we saw in section 5 above, the theory of proportions in the Greek
mathematical tradition presupposes that magnitudes stand in compar-
ative size relations. We also saw that the minimal basis presupposed by
the mathematical properties of magnitudes described in Euclid’s
books 5 and 7 consists of the part-whole composition relation and the
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relation of equality. That is, if the part-whole composition of magni-
tudes is supplemented with the relation of equality, then the remaining
mathematical properties of magnitudes follow, because greater and
less can be defined using equality and the part-whole relation. Using
equality in this way expands the greater- and less-than relations into a
total ordering on magnitudes. 

Kant introduces the relation of equality into his theory of magni-
tudes in just this way. Kant uses equality to define a size relation
between distinct magnitudes that are not related by part-whole compo-
sition. Kant thereby gives a sense to one magnitude being greater or
less than another even when the magnitudes are only partially overlap-
ping or do not overlap at all. In an extended lecture note on the part-
whole relations of magnitudes, Kant defines larger and smaller for
magnitudes using the relation of equality as follows: 

A > than B if a part of A = B; in contrast A < B, if A is equal to a part of B.
(28:506, late 1780s)55

Thus, one magnitude will be larger than another as long as a part of it
is equal in size to the other, which in principle allows the ordering of
any two magnitudes of the same kind according to their size.56

The relation of equality also allows magnitudes to stand in ratios,
pairs of magnitudes to stand in the same ratio, and magnitudes to mea-
sure one another. As I noted in section 2 above, the Elements state that
two magnitudes have a ratio to one another that are capable, when
multiplied, of exceeding one another, and that two magnitude pairs
stand in the same ratio when the relations of equality, greater than, and
less than remain the same under equimultiple transformations. The
multiplication of magnitudes rests on the composition of multiple dis-
tinct magnitudes equal to a given magnitude, which can be composed
to form a whole. These are the same requirements that underlie mea-
surement, which rests on the stipulation of a unit magnitude, the com-
posing of magnitudes equal to the unit, and the equality of the
composed and measured magnitudes. Thus, Kant’s use of the relation
of equality accounts for the remaining properties presupposed by the
Greek theory of magnitudes.57 Kant’s theory of mathematical cogni-
tion rests on the representation of a strict logical homogeneity in intu-
ition, the categories of quantity, and the concept of equality.

There is a final point I would like to address before closing. On the
interpretation I have given, the representation of part-whole represen-
tations of magnitudes in intuition is required to make mathematical
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cognition possible. There is, however, another use of part-whole rela-
tions in Kant that might suggest a merely logical foundation for math-
ematical relations that would not require intuition: the part-whole
relations between the extensions of concepts.

In Kant’s view, both things and concepts fall under a concept, but
from a purely logical point of view, which considers the relation
between concepts in abstraction from their relation to objects, the
extension of a concept consists of the (possible) concepts that fall
under it. Kant explains various logical forms of judgment in terms of
the relations between the extensions of concepts and uses Euler’s cir-
cles (Venn diagrams) to illustrate them (9:109; he sometimes uses
squares). For example, the “All perrisodactyla are ungulates” would be
illustrated by a circle representing the concept ‘perrisodactyl’ fully
contained within a larger circle represented by ‘ungulate’. Strikingly,
Kant also draws analogies between the part-whole relations of concept
extensions and the the part-whole relations of space.58 Kant’s views
suggest that the part-whole relations between concepts could some-
how account for mathematical relations in the manner suggested for
the part-whole relations of magnitudes.

This purely logical approach will not work, however. As we saw
above, the extensions of concepts consist of other concepts that repre-
sent specific differences and hence heterogeneous manifolds, and in
Kant’s view such manifolds cannot be joined together in a manner that
satisfies the Greek conception of composition. 

 Even if this problem were set aside, however, in Kant’s view, concept
extensions cannot stand in the relation of equality. (Kant does state
that distinct concepts can have identical extensions (9:98), but he
nowhere allows that extensions could be distinct yet equal.) As a con-
sequence, equality cannot be used to supplement the comparative size
relations between extensions to form what we would call a total order-
ing. 

In fact, Kant explicitly mentions this limitation of the part-whole
relations between concept extensions: 

One concept is not broader than another because it contains more under
itself—for one cannot know that—but rather insofar as it contains under
itself the other concept and besides this still more.(9:98)

This passage shows that despite his use of Venn diagrams to illustrate
logical relations, Kant is well aware, and even goes out of his way to
state, that the comparative size between concept extensions is only
what we would call a partial relation, restricted to full part-whole con-
tainment. Since Kant does not allow the relation of equality between
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extensions, there is no sense that can be given to the ratios between
extensions, not even when one is fully contained in another, and there
is also no way to introduce a measure of size.

9. Conclusion

I have argued that the strong similarities between the Greek concep-
tion of magnitudes and Kant’s treatment of them show that Kant devel-
oped his theory of mathematical cognition in response to the Greek
mathematical tradition. This influence on his views is not immediately
apparent, since Kant could rely on his reader’s familiarity with the
Greek conception of magnitudes and the Eudoxian theory of propor-
tions. Furthermore, Kant does not present his full theory of mathemat-
ical cognition in the Critique of Pure Reason, which had broader aims.
Nevertheless, the mathematical principles of the System of Principles
place magnitudes at the center of his theory. Both published and
unpublished texts show that Kant closely followed the Eudoxian theory
in thinking that the mathematics of magnitudes rests on the composi-
tion of magnitudes that are mathematically homogeneous. Kant there-
fore wished to explain our cognition of this composition and of
mathematical homogeneity. Kant also followed the Greek mathemati-
cal tradition in his mereological approach to our cognition of magni-
tudes. The resulting theory of cognition posits, on the one hand, a role
for intuition in cognizing mathematical composition, and on the other,
a role for the categories of quantity in cognizing the part-whole rela-
tions among magnitudes. If we also take into account Kant’s use of the
concept of equality, we can see that he provides a foundation for the
Eudoxian theory of proportions as well as the theory of measurement.

If Kant had not followed the Euclidean tradition, had he thought of
arithmetic as more fundamental than geometry, and had he possessed
a well-developed conception of the set-membership relation, he might
have given a very different account of mathematical cognition. As it
was, the Euclidean tradition, and in particular the Eudoxian theory of
proportions, with its emphasis on concrete continuous magnitudes
over discrete magnitudes, steered Kant toward a mereological account
of mathematical cognition. 

If my interpretation is correct, Kant’s philosophy of mathematics is
more eclectic than one might have expected. On the one hand, Kant
engaged with some of the pressing mathematical issues of his day;
inspired by the fluxional calculus and its attempt to address difficulties
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posed by infinitesimals, he developed a theory of cognition that was
founded on a continuous figurative synthesis.59 On the other hand,
Kant directly engaged with the Greek mathematical tradition. These
two influences converge in the synthesis of composition underlying
our representation of continuous magnitudes. 

It seems to me that Kant’s eclecticism is a consequence of his desire
for completeness and his respect for two millennia of philosophy. Kant
does not believe that a clean slate is the best way to progress. One sees
this in his attempt to reconcile empiricism and rationalism while
improving on both. One also sees this in the Transcendental Dialectic,
which shows far more tolerance of scholastic notions than modern
readers will. In this respect, he is much more like Leibniz than, say,
Hobbes. From a modern standpoint this side of the arithmetization of
mathematics, one might think that Kant showed too much respect for
the Greek mathematical tradition. Indeed, even in his own time, he was
somewhat of a throwback in his insistence on the centrality of spatial
magnitudes and geometry. Kant was not, like Leibniz, an original and
contributing mathematician, nor did he aim to be. Kant’s focus was
philosophical: he was concerned with the epistemology of mathematics
and the nature of mathematical cognition. Given his concerns and the
fact that he was writing before the complete arithmetization of mathe-
matics, it is quite natural that his theory of mathematical cognition
gives such a prominent role to the cognition of magnitudes.

University of Illinois at Chicago
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Notes

I would like to thank Bill Hart, Emily Carson, Lisa Downing, Andrew Jan-
iak, Ian Mueller, Charles Parsons, Ofra Rechter, Sally Sedgwick, Lisa Shabel,
William Tait, and Isaac Thotz for their comments. I would especially like to
thank Robert Adams, Tyler Burge, John Carriero, and Michael Friedman for
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lengthy discussions and for detailed comments and discussions through the
long gestation of this work; their help was invaluable. I am also indebted to two
anonymous reviewers for incisive suggestions. Early versions of this paper that
focused on the inadequacies of conceptual representation were presented at
Indiana University, Trinity College, University of Illinois at Chicago, University
of Toronto, University of Virginia and as a guest lecture in a seminar at Har-
vard University in 1999, and a recent version was discussed in a seminar at
UIC; I would like to thank the participants for their helpful responses.

1 Concepts can also relate to other concepts, but in human theoretical cog-
nition, an intuition must ultimately mediate between any concept and its
object.

References to the Critique of Pure Reason will be, in the standard way, to
the original pagination of the first (A) and second (B) editions; all other ref-
erences to Kant’s work will be to volume and page number, separated by a
colon, of the Akademie edition of Kants Gesammelte Schriften. References to lec-
tures on metaphysics are followed by the best estimate of the date of the lec-
ture. All translations from the German are my own, though I have closely
consulted Guyer and Wood 1998, Hatfield 1997, Young 1992, and Ameriks and
Naragon 1997.

2 I have primarily in mind the work of Jakko Hintikka (1969, 1972, 1974a,
1974b), Charles Parsons (1969, 1984), Manley Thompson (1972), Robert
Howell (1973), Emily Carson (1997), and Michael Friedman (1992, 2000).

3 Kant distinguishes between two notions of magnitude, quantum and quan-
titas. The Latin suggests that the two are related as relatively concrete to more
abstract, and this is how Kant understands them. In the Axioms of Intuition,
Kant provides a definition of quantum and argues that all appearances are mag-
nitudes in this sense (B202–3). Thus, objects like walking sticks don’t simply
have magnitudes; they are magnitudes. Kant’s argument turns on the claim
that apprehension of an appearance requires the representation of a determi-
nate space or time, and it is in virtue of this relatively concrete determinate
space or time that an appearance is a magnitude. Although I briefly discuss
Kant’s more abstract notion of magnitude (quantitas), the focus of the present
paper will be on Kant’s concrete notion of magnitude (quanta). See note 9
below.

4 For a discussion of this point, see Stein 1990, 163–66.
5 For examples of this view, see Walsh 1975, 110–11, and Kitcher 1982, §5. 
Kant’s theory of magnitudes is also obscured by his presentation of it in

the Critique of Pure Reason. I think, for example, that there have been misunder-
standings of the treatment of mathematics in the Transcendental Aesthetic on
the one hand and the Transcendental Analytic on the other, which have
encouraged misinterpretations of Kant’s discussion of magnitudes in the Axi-
oms of Intuition. Perhaps encouraged by the “arithmetization” of mathemat-
ics, some scholars hold that the Axioms of Intuition concern only the
application of mathematics to objects of experience, while others think that
the Axioms concern only the introduction of a metric into space and time (or
into the measurement of objects in space and time). This has discouraged
appreciation of important claims of the Axioms of Intuition that concern any
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mathematical cognition whatsoever. I argue for this position in Sutherland
2005a. 

6 Brittan 1978, for example, includes a thoughtful and seminal discussion;
Parsons 1984 provides a careful assessment of Kant’s use of different notions
of magnitude in a variety of texts; Friedman 1992 includes a lucid analysis of
the notions of magnitude, primarily in Kant’s philosophy of arithmetic; and
Longuenesse 1998 also provides a penetrating reading of the concepts of mag-
nitude in that context.

7 Charles Parsons (1984), for example, explores the relation between
Kant’s notions of quantity and magnitude and his understanding of arithmet-
ical concepts in particular. Michael Friedman (1992, 104) provides an illumi-
nating account of Kant’s geometry, while his discussion of magnitudes is found
in a more general chapter on the mathematical sciences, which focuses on
arithmetic and algebra. Beatrice Longuenesse’s treatment of magnitudes
(1998, chap. 9) begins with number and arithmetic and only then considers
the spatial magnitudes of geometry.

8 A complete account of Kant’s philosophy of mathematics would require a
treatment of his more abstract notions of magnitude, and hence consideration
of points brought forward by the authors mentioned in the previous note and
by other authors. For more on the distinction between Kant’s abstract and
concrete notions of magnitude, see my Sutherland 2004. I discuss Kant’s views
on arithmetic and algebra in more detail in Sutherland, Forthcoming. 

9 For a discussion of this role and its recognition, see Sutherland 2005a.
10 Kant also allows for this role at A162/B202, where he says that the princi-

ples of mathematics all acquire their possibility from the principles of the Axi-
oms and Anticipations.

 One might counter that Kant thinks that demonstrating the real possibil-
ity of mathematics amounts to establishing its application to the objects of
experience and hence does not concern pure mathematics after all. Kant’s
description of the Axioms and Anticipations as concerning the application of
mathematics to experience encourages this view. I think, however, that in
Kant’s view, the conditions for pure mathematics and the conditions for its
application are much more closely related than this interpretation suggests.
Longuenesse makes essentially the same point in her careful analysis of synthe-
sis speciosa (1998, 270 and 274–75). I return to this issue in note 39 below; for
a more extended discussion, see “The Point of Kant’s Axioms of Intuition.”

11 The two-step structure of the argument of the B-edition Axioms of Intu-
ition—first for magnitudes, then for extensive magnitudes—has not been rec-
ognized; I also think that the definition has not been properly understood. For
a full discussion of the structure of the argument and the definition of magni-
tude, see Sutherland 2004.

12 There is much careful philosophical scholarship attempting to recon-
struct Eudoxian and pre-Eudoxian theories of proportion. This work, how-
ever, does not bear on the present paper and I will refer to the Greek theory of
proportions as Euclid’s; the basic features of the theory presented in Euclid
and passed down through the Greek mathematical tradition are sufficient for
our purposes.
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13 References to Euclid’s statement of definitions, axioms, and propositions
will be to Ian Mueller’s translation (see Mueller 1981, 317–70). All other trans-
lations of Euclid are from Heath (see Euclid 1956).

14 It is not entirely clear what kinds of things the Greeks counted as magni-
tudes. Although the kinds mentioned were clearly paradigmatic, angles,
weights, and other things may have been counted as magnitudes as well. Aris-
totle, who followed Eudoxus and preceded Euclid, does not use the term
‘magnitude’ when discussing ratios and proportions, and he may have wished
to reserve the term for geometrical magnitudes; see Mueller 1970, 1. Euclid,
on the other hand, thought of numbers as magnitudes, as I discuss below in
note 16.

15 The requirement of homogeneity for standing in ratios may not have
been a part of Eudoxus’ original theory, but was a requirement by the time of
Euclid (see Mueller 1970). Two inhomogeneous magnitudes could be called
“incommensurable,” meaning that two magnitudes cannot be compared at all,
but this should not be confused with the notion of incommensurability dis-
cussed below, which means that two magnitudes have no common measure.
Two magnitudes could be comparable without having a common measure; for
example, √2 is smaller than 2 and hence comparable, but it shares no common
measure with 2.

16 See Stein 1990 for a lucid discussion of the theory of ratios to which I am
indebted. This roundabout way to define sameness of ratio avoids the problem
of incommensurables. The scope of the present paper unfortunately prevents
a more complete account, which belongs to a paper on Kant’s treatment of dis-
crete magnitudes. Nonetheless, a brief description of the problem and its solu-
tion motivates the priority of geometry over arithmetic, helps explain the
relation between books 5 and 7, and reveals further influences of the Greek
mathematical tradition on Kant.

 Euclid defines a number as a multitude composed of units (bk. 7, def. 2).
As in the case of magnitudes more generally, there was a tendency in Greek
thought to think of numbers concretely; numbers were thought of as multi-
tudes of particular things; for example, the two of my eyes would be distinct
from the two of your eyes (see Stein 1990, 163–66). The ontological status of
numbers in Greek thought is a complex issue, but if we set this aside there is
another extremely important difference from the modern conception.
Because the Greeks thought of numbers as multiples of units, they held that
there are only numbers corresponding to the positive integers; according to
the Greeks, there simply are no numbers corresponding to what we call the
rational numbers, such as ²⁄₃. This did not limit their mathematics, however,
since the theory of ratios and proportions allowed them to treat the ratios
between natural numbers, that is, by using the ratio 2:3. 

 There are, however, ratios between magnitudes that cannot be expressed
as the ratio of two natural numbers. The ratio between the diagonal and the
side of a square, for example, cannot be expressed as such a ratio because
there simply is no unit, no matter how small, that will divide both the diagonal
and the side of a square a whole number of times. In other words, the two mag-
nitudes are “incommensurable.” Thus, in the Greek account, there is a more
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restricted range of ratios in which numbers can stand than magnitudes more
generally.

Given the Greek conception of number, Euclid had good reason not to
consolidate the accounts of magnitude in books 5 and 7. Book 5 assumes the
existence of a fourth proportional for any three; expressed algebraically it
assumes that for every homogeneous magnitude pair a, b, and another magni-
tude c, there is an x homogeneous with c such that a:b = c:x. This condition is
not fulfilled for numbers; for example, there is no whole number correspond-
ing to 2:5 = 1:x. (I would like to thank Bill Tait for pointing this out to me.)
Despite their separate treatment, numbers are still magnitudes: recall that a
ratio is a relation in respect of size between two magnitudes of the same kind
and that numbers can stand in ratios. I would like to thank Lisa Shabel for
prompting me to make this point explicit.

 The restricted range of numerical ratios indicated a deficiency or incom-
pleteness to the Greeks and entailed that numbers could not be used to
describe all mathematical relations. These factors led the Greeks to give prior-
ity to spatial magnitudes over numbers and to geometry over arithmetic, a per-
sisting legacy of the Greek mathematical tradition quite out of spirit with the
eventual arithmetization of mathematics. It strongly influenced many mathe-
maticians and philosophers through the early modern period, including Kant. 

 Kant held that the complete concept of a number requires a determinate
relation to unity, a condition that rational numbers satisfied since the numer-
ator and denominator each satisfied it. The ratios between incommensurable
magnitudes did not, however. Such a ratio can at best be numerically approxi-
mated, as 1.141592 only approximates √2. Kant’s view ultimately rests on the
claim that a complete concept requires a completion or totality in the determi-
nation of the concept. He thinks this implies that the ratio between the diago-
nal of a square and one of its sides cannot be expressed by numbers, and holds
that geometry can represent magnitudes that arithmetic cannot (11:207–10).
His conclusions agree with the Greek view. As in other cases discussed in this
paper, Kant’s approach to mathematics is through mathematical cognition,
and he finds features of mathematical cognition that explain features of math-
ematics. 

 I agree with Michael Friedman that in Kant’s view, universal arithmetic,
that is, algebra, goes beyond the arithmetic of numbers by allowing the repre-
sentation of incommensurable magnitudes, and that the arithmetic of num-
bers corresponds approximately to book 7 while algebra corresponds
approximately to book 5. See Friedman 1992, 109–21 for a careful and helpful
discussion of these difficult matters. I do not agree, however, with his sugges-
tion that algebra differs from arithmetic of numbers in adding the concept of
ratio (see Friedman 1992, nn. 31 and 32). The arithmetic of numbers devel-
oped in book 7 also presupposes the notion of ratio. For a more detailed dis-
cussion of Kant’s arithmetic and its relation to algebra, see Shabel 1998 and
Sutherland, Forthcoming.

17 I owe this algebraic form to Heath (Euclid 1956, 2:139 and 170), though
I have simplified the first case by considering just three terms. Heath in turn is
quoting De Morgan’s entries for Ratio and Proportion in Penny Cyclopedia, vol.
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19, 1841. DeMorgan states that the first six propositions are simple proposi-
tions of “concrete” arithmetic.

18 There are also laws governing magnitudes that apply to particular kinds
of magnitudes, for example, the propositions of geometry that depend on spe-
cifically geometrical definitions and axioms.

19 See, for example, A734/B762, A717/B745, Enquiry (2:278), and the May
19, 1789 letter to Rheinhold (11:42). Kant was not alone in holding this view;
Newton and Euler, for example, shared it. See Sutherland, Forthcoming, for a
more thorough treatment of Kant’s views on arithmetic and algebra.

20 I discuss the early modern understanding of the theory of proportions in
more detail in Sutherland, Forthcoming.

21 As I stated in the Introduction, I will not attempt a detailed historical
reconstruction of the reception of the Greek mathematical tradition in Kant’s
time, but I would like to make a few comments on the availability of the Euclid-
ian theory of proportion. Many editions of Euclid in Kant’s day altered and
abbreviated the proofs, and many included only books 1–6, or books 1–6 and
books 11 and 12; that is, they included the books of plane geometry or plane
and solid geometry, skipping the arithmetical books 7–9 and book 10 (on
incommensurables). The Latin editions by Andre Tacquet (1654) and by
Claude François Milliet Dechales (1660), among the most popular, only
included the eight geometrical books, at least in their earliest editions (Heath
1956, 1:105–6). Even for those without access to books 7–9, however, book 5
would have provided a good understanding of the theory of proportion. Fur-
thermore, Tacquet also published Arithmeticae theoria et praxis (1656), which
included the arithmetical books (Wolff 1750, §13), and an improved edition of
Dechales’ Mundum Mathematicum appeared in 1690, which included all the
books of Euclid (Wolff 1750, §263). Both works went into multiple editions
(see the Dictionary of Scientific Biography, “Tacquet,” 13:236, and “Dechales,”
2:622). There were other good Latin translations of the entire Elements in
1572, 1655, and 1756, and German translations in 1714 and 1781. There was a
German translation of just the arithmetical books in 1558; see Heath 1956,
1:104–8. 

 Kant’s exact sources for Euclid are uncertain. Kant kept a relatively small
library (about 450 books), and there are difficulties with using it as an indica-
tion of his sources: it may at one time have included more, Kant certainly bor-
rowed and read many books that were not in his library, and, especially toward
the end of his life, Kant received unrequested books from authors and pub-
lishers. We can be relatively sure that his library contained at least twenty-eight
particular books on arithmetic, geometry, trigonometry, universal and ele-
mentary mathematics, and the foundations of mathematics, but the list
includes no editions of Euclid (see Warda 1922, 7–16 and 38–40). 

 Notes on Kant’s mathematics lectures in 1762–64 provide an important
clue to the availability of the arithmetic books and Kant’s own knowledge of
them. Kant states, “Already 2000 years ago Euclid quite demonstratively
explained the properties of numbers in Books VII – IX, which in newer edi-
tions have been grievously omitted. Taquet [sic] translated them” (29:52).
Kant is referring either to a late edition of Tacquet’s Elementis Planae et Solidae
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(1701), which by that late edition may have included the arithmetical books
(as suggested by 29:683fn5211), or to his Arithmeticae theoria et praxis mentioned
above. Although omitted in many if not most editions of Euclid, the arithmet-
ical books were available, and Kant thought highly enough of them to think
their omission grievous.

22 In this interpretation of Kant, not only geometry but the arithmetic of
numbers and algebra concern magnitudes, which are homogeneous mani-
folds in intuition. I think that Charles Parsons, in his seminal article “Kant’s
Philosophy of Arithmetic” (1969), overlooks the full significance of the differ-
ence between “a concept of a thing in general by determination of magnitude”
and “a concept of a thing in general.” Although he remains concerned about
the intuitive conditions for the determination, I think he misses the role of
Kant’s conception of magnitudes (134–35).

 Friedman (1992, 112–22) offers an interpretation of Kant’s philosophy of
mathematics in which the arithmetic of numbers and algebra “provide us with
the concept of a thing in general” (113), and “do not assume anything specific
about the nature and existence of the object of our intuition” (113); he also
states that “in an important sense, arithmetic does not concern objects of intu-
ition at all” (122). This position is connected to his view that Kant conceived
algebra and arithmetic as “techniques of calculation for solving particular
problems, for finding the magnitudes of any objects there happen to be—
where the latter are not given by the sciences of arithmetic and algebra them-
selves.” Time is a condition of these calculations in the successive addition of
unit to unit (116), but arithmetic and algebra completely abstract from the
nature of the objects treated. 

 Friedman adds in a footnote that, more carefully stated, arithmetic and
algebra provide us “with the concept of an object of intuition in general” (1992,
114 n. 34), and he cites texts that refer to the synthesis of the manifold homo-
geneous in intuition in general and the concept of magnitude. His discussion
of arithmetic and algebra also makes clear that they concern, as Kant states,
the “concept of a thing in general through the determination of magnitude.”
Nonetheless, Friedman’s interpretation does not emphasize the fact that arith-
metic and algebra concern magnitudes and presuppose their mathematical
homogeneity. 

 This is not to take issue with the roles of intuition for which Parsons or
Friedman are arguing—for example, that in Kant’s view the intuition of time
either provides a model for or is necessary for the very possibility of represent-
ing iteration (Parsons 1984, 116; Friedman 1992, 116-22). It is rather that
important features of Kant’s philosophy of mathematics will be missed if we
overlook the role of magnitudes. (It should also be noted that Friedman later
extends his interpretation in interesting and important ways in “Geometry,
Construction and Intuition in Kant and his Successors” (2000). He does not,
however, significantly alter his treatment of magnitudes.)

 In my view, arithmetic and algebra are more abstract than geometry, and
Kant’s account of number focuses on the rule or schema for magnitudes
rather than on the objects considered. Nonetheless, arithmetic and algebra
cannot abstract from the fact that the objects concerned are magnitudes, that
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is, homogeneous manifolds in intuition in general. It is this fact that makes
arithmetic and algebra possible at all.

23 This notion of homogeneity reflects its etymology, as it derives, through
Latin, from the Greek for ‘same genus’. The German, ‘gleichartig’, derives
from ‘same species’.

24 Longuenesse holds that this is the notion of homogeneity Kant has in
mind for the homogeneity of magnitudes (1998, 249–50, esp. n. 16). As will
become apparent, I think that Kant appeals to a strict notion of logical homo-
geneity that requires intuition for its representation.

25 See note 8 above. The focus in this paper on quanta, and hence concrete
magnitudes, reflects the aim of determining the role of intuition. A more com-
plete account of the role of the categories and schemata in Kant’s philosophy
of mathematics would require an independent treatment of quantitas. I discuss
the distinction between quanta and quantitas in more detail in Sutherland
2004.

26 I follow the editors of Kant’s Lectures on Metaphysics in thinking that the
term ‘latter’ had been mistakenly inserted for ‘former’ either by Kant, by the
student taking the notes, or by a transcriber (students very often hired some-
one to rewrite their notes). See Kant 1997, 460, note b. The last line of the
quote substantiates the claim that this mistake had been made.

27 In an extensive survey of passages, I have not been able to detect any dis-
tinction between Kant’s use of ‘gleichartig’ and ‘homogen’, and I take them to
be synonymous.

28 There is an apparent difficulty with Kant’s account of bare numerical dif-
ference, which he describes as multiple instances of an infima species. Kant
claims in the Critique that it is a presupposition of the faculty of reason that
there are no infimae species. This presupposition is based on the fact that con-
cepts are general representations, that is, they are capable of referring to more
than one thing by means of a common characteristic (A655–56/B683–84). If
this were true, however, then following the line of thought sketched above,
there could be no representation of strict logical homogeneity or of magni-
tudes. But if Kant does not think that there are infimae species, why does he
explain the maximal logical homogeneity of magnitudes in reference to
them?

 The solution of this difficulty is found in two ways of considering con-
cepts. Kant claims that if we consider a concept apart from all relation to an
object, that is, consider it from the point of view of logic, we see that because
it is a general representation, it is always possible in principle to add further
specifications to it. For that reason, a concept is by its very nature not an infima
species. The claim that there are no infimae species is a principle of logic.

According to Kant, however, we can also consider concepts as they are
employed in the cognition of objects. Such concepts are not qualified ad infin-
itum. In the Jäsche Logik, Kant states that when we employ a concept in the cog-
nition of an individual, we either do not notice or ignore the further possible
specifications of the concept: “Only comparatively for use are there lowest con-
cepts, which has attained this meaning, as it were, through convention, insofar
as one has agreed not to go deeper here” (9:97) and “A species infima is only



DANIEL SUTHERLAND

194

comparatively infima, and is the last in use. It must always be possible to find
another species, whereby this latter would in turn become a genus. But applied
immediately to individua, a species can be called a species infima” (24:911).

29 I would like to thank Tyler Burge for assistance in clarifying several points
in this argument.

This limitation of conceptual representation requires two clarifications.
First, Kant thinks that we possess concepts that are derived from intuitions; the
concept of a region of space, for example, is based on an intuition of space.
Such concepts draw on the properties of intuition for their content and may
not be subject to the same representational limitation. Thus, we might derive
a concept of bare numerical difference from intuition, but we cannot repre-
sent that difference by means of concepts on their own. Second, even concepts
on their own could allow us to characterize a strict logical homogeneity nega-
tively as a difference where there is no specific difference. (I would like to
thank Robert M. Adams for prompting me to consider this possibility.) This
negative characterization, however, does not yield a representation with any
positive content, and does not give us the ability to conceptually represent
bare numerical difference by means of concepts.

30 See in particular notes 43 and 52 below.
31 There are two notions of numerical diversity in play here: the numerical

diversity of discrete objects and the continuous numerical diversity of regions
of space, which Kant describes as the “plurality and numerical difference given
to us by space itself.” Kant argues that intuition allows us to represent the
numerical diversity of two water drops, that is, the numerical difference of dis-
crete objects. He argues that if we abstract from any difference of quantity, and
hence any difference between the amount of space each object occupies, their
simultaneous position in different locations in space would still distinguish
them. In other words, the discrete numerical diversity of indistinguishable
objects is grounded in the continuous numerical diversity given by intuition.

32 Keeping in mind, as we noted earlier, that the algebraic notation is a
modern anachronism used to clarify a proposition that concerns the composi-
tion of magnitudes in general.

33 I would like to thank Bill Hart for pointing out the interdependence of
homogeneity and composition in my interpretation.

34 The idea that only homogeneous magnitudes can be composed carried
over into the understanding of algebra found in the Euclidean tradition. Alge-
braic terms were deemed meaningful only insofar as they stood for geometri-
cal quantities. Thus, algebraic terms of different powers were thought to
correspond to the different homogeneous kinds of elements: terms of first
power to lines, second power to areas, and third power to volumes. The words
‘squared’ and ‘cubed’ reflect this manner of thinking of algebraic terms. The
Euclidean understanding of algebra influenced renaissance and early modern
developments in algebra. Some early modern mathematicians thought of alge-
bra as primarily a method of solving geometrical problems, and solutions
obtained algebraically had to be geometrically constructed in order to count
as proper proofs. See Shabel 1998 for a careful assessment of this understand-
ing of algebra and Kant’s own views. Also see my “Kant on Arithmetic, Algebra,
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and the Theory of Proportions.”
35 Although this appears a reasonable conclusion, it is one that mathemati-

cians would reject today. The real line can be thought of as a set of continuum-
many points, each without extension. Similarly, a real plane can be thought of
as a set of continuum-many lines, each without width. The modern arith-
metized approach to geometry and the notion of set-membership relation
upon which it is based allows us to circumvent the paradox.

36 This common notion may have been added to the Elements after Euclid
but was generally accepted. Two narrower notions of part or parts appear in
the definitions of books 5 and 7, but a part in either of these senses is also
smaller than the whole, in conformity with common notion 5; see Euclid 1956,
1: 232, 2:113–15 and 277–80.

Common notion 5 entails that a magnitude cannot have the same size as
a proper part of it. From a modern standpoint, an infinite magnitude can have
the same size as a proper part of it. We have already set aside infinite magni-
tudes, however, since we are considering only those that conform to the
Archimedean property and hence can stand in ratios to one another. This is
not to say that a whole the same size as a proper part was a possibility recog-
nized and ruled out by the Greeks; nor was it seen as a possibility by Kant, who
thought it analytic that a whole is greater than its part (B17). Scholastics and,
famously, Galileo recognized that an infinite collection is equinumerous with
a proper part and that in this sense a whole is equal to a proper part; it was
thought a paradox, and in response Galileo denied that equal, greater, and
less applied to infinite quantities (Galilei 1954, 31–33). Although it may have
appeared in Bolzano, it probably was not until Dedekind that the possibility of
a collection being equinumerous with a part was used as a criterion of the infi-
nite (1901, 63).

37 There is a converse relation concerning composition that is also
assumed: for any part of a magnitude, there is another whose composition
with the first is the whole magnitude.  I would like to thank Bill Tait for point-
ing this out to me.

There is a difference between the way that the term ‘homogeneous’ is
used in Euclid’s Elements and in Kant that can now be clarified. In the Elements,
‘homogeneous’ is predicated of two or more magnitudes in respect of each
other, and hence concerns the relation between certain magnitudes. In Kant,
‘homogeneous’ is predicated of the manifold contained within a magnitude,
and hence concerns the constitution of any magnitude. 

 Despite this difference in the way the term ‘homogeneous’ is used, the
underlying notion of mathematical homogeneity on which both views rest is
the same. In the Elements, magnitudes are homogeneous with each other if and
only if they belong to the same class of things that allow of composition and
hence of standing in ratios. (The Greek concept of magnitude presupposes
the notion of mathematical homogeneity, for to be a magnitude is to belong to
some class of things that are mathematically homogeneous with each other.)
Given the Greek view of composition, a magnitude and all the parts that com-
pose it belong to the same class of mathematically homogeneous elements.
This is reflected in Kant’s definition, according to which something is a mag-
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nitude in virtue of the mathematically homogeneous parts that compose it. (I
would like to thank Lisa Shabel and Bill Tait for raising this issue.)

38 Requiring an ability to compose is a quite natural view of the conditions
of measurement that corresponds to what is now called standard measure-
ment. It turns out to be too restrictive. In the 1950s, the conditions of measure-
ment were axiomatized, and it was demonstrated that measurement is possible
even in cases where there is nothing corresponding to the composition rela-
tion (see Krantz, Suppes, and Tversky 1971, 1:6–7).

39 This result allows us to make an important point concerning the Greek
view and Kant’s views on the application of mathematics to the world, alluded
to in footnote 10 above. As mentioned in the Introduction, from a modern
viewpoint, the foundation of mathematics begins with numbers, and it is a fur-
ther issue whether numbers can be applied to magnitudes in order to measure
them. In the Greek account, mathematics is rooted in the study of homoge-
neous magnitudes, and the investigation into the assumptions underlying
their mathematical properties simultaneously reveals the conditions for their
measurement, since the mathematical properties and the conditions for mea-
surement rest on the same fundamental relations of composition and relative
size of magnitude. Similarly, Kant holds that uncovering the conditions of the
mathematical cognition of magnitudes will simultaneously reveal the condi-
tions for the application of mathematics to objects of experience, which are all
magnitudes. Longuenesse makes essentially the same point in her discussion
of synthesis speciosa (1990, 270, 274–75), as does Friedman in his discussion of
the real possibility of mathematics (1992, 93).

40 By defining smaller and larger in this way, we are assuming that a magni-
tude cannot have the same size as a proper part of it, as mentioned in footnote
36 above. It also assumes the existence of a part of the larger magnitude equal
to any smaller magnitude, whatever size the smaller magnitude may be. Mod-
ern mereology articulates these and other assumptions. See Simons 1987.

41 More carefully, a magnitude, in order to be either extensive or intensive,
must be determinate and hence represented through the synthesis of compo-
sition, about which I will say more below. The representation of space dis-
cussed in the Transcendental Aesthetic is not determinate and is neither
extensive nor intensive, although it is a magnitude. For more on this issue, see
“The Point of Kant’s Axioms of Intuition.”

42 Since Kant holds that space is infinitely divisible, he will also maintain
that there are an unlimited number of parts in a region of space. He is not,
however, claiming that we apprehend all of them as parts. Kant has in mind
the fact that we cannot apprehend a line, for example, without apprehending
it as having distinguishable parts, even if we do not explicitly cognize or other-
wise pick out all the possibly distinguishable parts.

43 Kirk Dallas Wilson (1975) has also emphasized the importance of part-
whole relations in Kant’s conception of intuition. My interpretation differs sig-
nificantly in the way it connects those mereological properties to mathematics.
It also differs in relating them to the Greek mathematical tradition. 

 The nature of intensive magnitudes raises an issue concerning the role of
intuition. An intensive magnitude is a magnitude and is therefore a homoge-
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neous manifold in intuition in general. This implies that an intensive magni-
tude is mathematically homogeneous, that is, that it allows composition
relations between smaller and larger intensities conceived as parts and wholes.
Furthermore, it implies that an intensive magnitude is a strict logical homoge-
neity. A particular color of light, for example, will differ in quality from other
colors, and hence be specifically distinguished from them, but the different
intensities of that light will be homogeneous with each other. Kant implies this
in the Prolegomena:

although sensation, as the quality of empirical intuition with respect to that by
which a sensation is distinguished specifically from other sensations, can never
be cognized a priori; it nonetheless can, in a possible experience in general, as
the magnitude of perception, be distinguished intensively from every other
homogeneous sensation. (4:309) 

He makes the same point in the First Introduction to the Critique of Judg-
ment: “One can definitely say: that things must never be held to be specifically
different through a quality that passes into some other through the mere dim-
inution or augmentation of its degree” (20:226 n.). See also the Metaphysik
Vigilantius, where Kant refers to the “manifold homogeneous” of an intensive
magnitude (29:1000, 1794–95). 

 Since sensations can represent a strict logical homogeneous magnitude,
it might seem that intuition is not required to represent it after all, contrary to
the argument outlined in part 1 above. Kant makes it quite clear, however, that
if it were not for intuition, and time in particular, we could not even represent
the intensive magnitude as containing a manifold. Thus, intuition is required
in order for us to directly represent extensive magnitude; it also allows us to
indirectly represent an intensive magnitude as a magnitude by means of directly
representing extensive magnitude. This is what Kant means in the Prolegomena
when he states that the principle of the Anticipations

does not subsume … sensation … directly under the concept of magnitude, as
sensation is no intuition containing space or time, although it places the object
corresponding to it in both. (4:306).

When Kant defines a magnitude as a homogeneous manifold in intuition, the
sense of ‘in’ comprises both intuitions that contain space and time, and sensa-
tions whose objects are placed in space and time.

44 Parsons has noted (1984, 112) that part-whole notions dominate in
Kant’s explanation of the categories of quantity. The development of Kant’s
views is more obscure and complex than my summary suggests; the connec-
tion between unity-plurality-totality, one-many-one, and part-whole is medi-
ated by Kant’s views on unity, truth, and perfection. The evidence is spread
throughout Kant’s notes in his copy of Baumgarten’s Metaphysics, and his own
notes on metaphysics (1902, vols. 17 and 18). Filling out the details, however,
would take us too far afield.

45 In a letter of 1797, Kant even refers to the category of intensive magni-
tudes:

All the categories are directed upon some material composed a priori; if this
material is homogeneous, they express mathematical functions, and if it is not
homogeneous, they express dynamic functions. Extensive magnitude is a func-
tion of the first sort, for example, a one in many. Another example of a mathe-
matical function is the category of quality or intensive magnitude, a many in
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one. (12:222–25)
46 This interpretation differs from that of Parsons (1984). As discussed in

footnote 7 above, Parsons is primarily interested in Kant’s understanding of
arithmetical concepts and their relation to the categories of quantity. This
leads him to focus on those texts that indicate a set-element relation rather
than the part-whole relation. He states: “Kant does not distinguish very clearly
between the whole/part and the set/element relation. I will show, however,
that there is some basis, even though not clearly articulated, for Kant to make
the distinction. Something like the latter relation is needed to make sense of
the relation of the categories to the concept of number” (1984, 113). In my
view, it is reasonably clear that the application of the categories of quantity to
intuition concerns the part-whole relation. 

 This interpretation also differs from that suggested by Longuenesse
(1998). I cannot do justice here to her account of the relation between the
quantitative forms of judgment and the categories of quantity, so I limit myself
to pointing out that her analysis focuses on the concept of number and arith-
metic and hence on Kant’s more abstract conception of discrete magnitude
(quantitas) rather than concrete magnitude (quantum). In her view, only quan-
titas “is strictly speaking an instance of the category of quantity,” and Kant’s ref-
erences to the categories or category of magnitude should be understood as
the category of quantitas (1998, 266). The schema of quantitas is number, so
that her account of the role of the categories focuses on discrete magni-
tudes—in particular, on discrete objects that fall in the extensions of concepts
(257). The categories of quantitas are used to determine the quantitas of a
quantum (that is, its size), but there appears to be no role for them in the cog-
nition of the part-whole relations of quanta. In my view, the categories can be
employed in the generation of our representations of quanta and our cogni-
tion of their part-whole relations, prior to and independently of their employ-
ment for measurement.

 As noted earlier, a complete account of Kant’s philosophy of mathemat-
ics will have to consider Kant’s philosophy of arithmetic as well, for which, see
Sutherland, Forthcoming.

47 See, for example, 11:208; 29:994, 1794–95. For an example involving
arithmetic, see 2:397.

48 As has been shown by recent work, Kant’s engagement with this issue
shaped his account of mathematical cognition: influenced by the Newtonian
geometric-kinematic interpretation of the calculus, Kant posited a continuous
figurative synthesis that generates geometrical representations through the
movement of a point in space. See Kitcher (1975), and see especially Fried-
man (1992, 55–95), who provides a penetrating analysis and exposition of the
kinematic conception, its limitations, and its influence on Kant.

49 Kant sometimes uses ‘composition’ in a broader sense for any sort of
combination; it is the more narrowly defined sense of composition that inter-
ests us here. See also The Critique of Practical Reason, 5:104.

50 This synthesis of composition is also the same figurative synthesis under-
lying Kant’s kinematic conception of mathematics; see footnote 48 above.

 Kant’s cognitive account of composition as an act of synthesis lends itself
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to obscuring the distinction between the composition relation in which mag-
nitudes stand and the operation of composing magnitudes.

51 In her discussion of Kant’s arithmetic, Longuenesse draws a similar con-
trast between the combination of marks in a concept and the generation of a
multiplicity from two given multiplicities “by means of an operation which has
nothing in common with the combination of marks making up the content of
a concept” (1998, 277). The conclusion she draws is quite different, however;
in her view, this shows that Kant’s concept of number is implicitly a second-
order concept, one that reflects a rule for constituting the extensions of con-
cepts. In my view, the contrast shows that mathematics requires a special syn-
thesis of combination of a strictly logically homogeneous manifold, that is,
intuition.

52 It may appear that strict logical homogeneity is too stringent a require-
ment for mathematical composition, which is surely not restricted to qualita-
tively identical parts of space and time. I would like to respond to three
different ways this issue might be raised. First, one might worry that a combi-
nation of blue and red blocks of the same size, say, into larger groupings would
not count as mathematical composition, because the blocks are qualitatively
distinct. This construes the role of strict homogeneity too narrowly, however.
There are different features of the blocks, and the feature that is mathemati-
cally composed, their spatial extension, is strictly logically homogeneous. Col-
ors can be mathematically combined under the right circumstances; that is,
when the colors are strictly homogeneous and when they are combined in
such a way that their intensities can combine. (I will say more about intensive
magnitudes below.) In the present case, however, their colors are not com-
bined in a way that could count as mathematical composition. Stated in
another way: what must be strictly homogeneous are the properties that are
mathematically composed, not all the properties of the combined objects.

Second, one might worry that requiring qualitative identity of the mani-
fold is too stringent even in the paradigm case of spaces, since we can mathe-
matically combine spaces of different sizes. Lines of different lengths, for
example, differ in quantity, yet they can be mathematically composed into a
longer line. This worry is reinforced by the fact that Kant’s discussion in the
Amphiboly refers to parts of space that are identical in both quality and quan-
tity. Here it must be said that although the Amphiboly has important implica-
tions for mathematical cognition, mathematical cognition is not its focus. Kant
is arguing against Leibniz’s assumption that all representation is fundamen-
tally conceptual in nature, and he does so by pressing on Leibniz’s principle of
the identity of indiscernibles. His argument focuses on the case in which the
spaces or the rain drops are identical in both qualitative properties and quan-
titative properties such as size, but this is not a requirement for all mathemat-
ical composition. He includes these quantitative properties for the sake of his
argument against Leibniz. More importantly, Kant does not need to distin-
guish here between two notions of magnitude, quanta and quantitas. The
former is a strict logical homogeneity, while the latter comprises the determi-
nate quantitative properties of a quantum. While it is true that spaces that are
identical in both quality and quantity are strictly logically homogeneous, this is
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not a requirement of strict logical homogeneity. What is required is that there
not be any qualitative difference in the manifold making up the quantum, and
lines of different sizes meet this requirement. For more on the distinction
between quantum and quantitas, see my “The Role of Magnitude in Kant’s Crit-
ical Philosophy.” For a discussion of Kant’s understanding of inner determina-
tions, outer relations, quality, and quantity, and their relation to quantum and
quantitas, see Sutherland 2005b.

The third worry is that if only space and time can be strictly logically
homogeneous, then only spaces and times are magnitudes. Kant, however,
clearly thinks of intensive magnitudes, such as the intensity of a light, as mag-
nitudes. The answer to this worry denies the antecedent of the conditional:
space and time are paradigm cases of strict logical homogeneity, but Kant
holds that intensive magnitudes are also instances of strict logical homogene-
ity (see footnote 43 above for a clarification of this point). At the same time, we
have seen that in Kant’s view, the representation of a strict logical homogene-
ity requires intuition, and cannot be represented by means of concepts alone
(see footnote 30 above). The homogeneous manifold of intensive magnitudes
can be represented only with the aid of the extensive magnitudes of space and
time, as explained in section 6. Hence, the mathematical composition of these
intensities would be entirely lost to us without the aid of the extensive magni-
tudes of space and time. (I would like to thank Michael Friedman for pressing
me to clarify Kant’s position on all three of these issues.)

53 For a discussion of Kant’s views on this principle, see my Forthcoming
(c).

54 In the language of the theory of measurement, the part-whole ordering
relation allows at best the creation of an ordinal scale and allows ordinal but
not extensive measurement. (Krantz 1971, chaps. 1 and 3).

55 Kant makes the same point in his discussion of magnitudes at 28:424,
1784–85; 28:561, 1790–91; and 28:637, 1792–93.

56 The magnitudes related by size will also have to be Archimedean in the
sense described on page 162 above.

Strictly speaking, the greater-than and less-than relations would not be a
total ordering on the set of magnitudes, since some magnitudes will be equal
to one another and hence neither greater nor less than each other. This is
merely a technicality, however; we can define the relation greater-than-or-
equal, which will not be a strict ordering but will be a total ordering. Alterna-
tively, we could define equivalence classes of magnitudes of equal size and
then order these equivalence classes using the greater-than or less-than rela-
tions.

57 I have argued that in Kant’s view, the categories of unity, plurality, and
totality function to allow us to cognize the part-whole composition relations of
intuition. The equality relation would seem to warrant a comparably impor-
tant position in Kant’s account of human cognition, yet no category corre-
sponds to it. Whence the concept of equality? 

 I cannot give a full account of Kant’s notion of equality here, but I believe
that it derives from the concepts of reflection described in the Amphiboly.
Specifically, it derives from the concepts of identity and diversity applied in the
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comparison of spatial appearances, where we understand equality to be iden-
tity of quantity and quantity to be quantitas, that is, the quantitative determina-
tions of a quantum. See Sutherland 2005b.

58 First, just as space is infinitely divisible into further spaces, concept exten-
sions are infinitely (logically) divisible into extensions distinguished by further
concepts (A655–56/B683–84). (This is another way of stating his doctrine that
in logic there are no infimae species of concepts; see footnote 28 above.) Sec-
ond, points are to lines as individuals are to the extension or ‘horizon’ of con-
cepts; that is, a point is a limit of the extension of a line just as an individual is
the limit of the extension of successive concepts in a hierarchy of concepts
(A658–59/B686–87). 

59 See note 48 above.


