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Leslie H. Tharp

Introduction

It has been generally accepted in the philosophy of
mathematics that elementary logic (EL), also
known as the predicate calculus, or first order logic,
yields a stable and distinguished body of truths,
those which are instances of its valid formulas. I
am concerned with presenting and examining evi-
dence relevant to such a claim. In sentential logic
there is a simple proof that all truth functions, of
any number of arguments, are definable from (say)
“not” and “and”. Thus one has not overlooked
any truth-functional connectives, even though one
started with the few which naturally presented
themselves. Operators such as “for infinitely
many x”, or for an arbitrary cardinal ¥, “for at
least X ™, are in some ways analogous to the
standard quantifier “for at least one x”. If these
operators are counted as quantifiers, there are
many more such quantifiers than there are formu-
las of elementary logic; so on rather trivial
grounds, there can be no theorem that all possible
quantifiers are already definable in EL. This
observation does not, however, rule out the possi~
bility that there might be a narrower notion of
quantifier for which such a theorem holds. If so,
and to the extent that the narrower notion is sig-
nificant, one will have evidence that EL is no
arbitrary stopping point. I will argue that natural
and satisfying criteria are suggested by the stand-
ard quantifiers which characterize arbitrary for-
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mulas of elementary monadic logic. The full logic
of relations, however, appears to be more problem-
atical.

Background

Whether or not it is a satisfactory picture of inter-
preted language, we shall retain the analysis which
resolves interpreted language into a semantical
part (models), a syntactical part (formulas), and
the relation of a model satisfying (or being a
model of) a formula. We do not contemplate alter-
ing the notion of model as it is used in elementary
logic. A model still consists of a universe and a
finite sequence of relations over the universe (for
simplicity we shall ignore constants and func-
tions). What we do contemplate is enriching the
set of formulas, and thereby of course extending
the satisfaction relation. Let us suppose that the
set of formulas of a possible logic is a countably
infinite set, and that each formula contains only
finitely many letters. Restrictions of effectiveness
will be introduced when they are relevant. It
hardly needs to be argued that these are reasonable
conditions to impose on any potential competitor
of elementary logic.

As a concrete example, let us take elementary
logic and define a new logic L(J) by adding the
symbol (Ix) which is read “for infinitely many x”.
It is clear how to define the resulting set of for-
mulas, and the corresponding satisfaction relation.
This logic extends EL in a definite sense, since the
class of models satisfying — (Ix) (x = %) is just the

G5



Leslie H. Tharp

class of all models with finite universes, which
cannot be defined by a formula of EL. (We are
taking EL and other logics to contain identity.) We
can also characterize the natural numbers with a
formula of L(]), since we can say that each number
has finitely many predecessors.

These examples suggest a general framework for
comparing logics. Without specifying the inner
workings of a logic'L, we may take it to be a
collection of L-classes; each L-class may be
thought of as a class of models of the form
{M: MSaty, of where o is a (closed) formula of
L and Saty, is the satisfaction relation for L.! Then
we may say that a logic L is contained in L, if
every Lj-class is an Lj-class. The relations of
equivalence and (proper) extension are then
defined in the obvious\way from containment. In
the previous example EL is contained in L(I), but
they are not equivalent, since a certain L(/ )-class
is not an EL~class.

Within this framework one can define, for a
given logic L, a notion of logical implication
between a set of formulas X and a formula &/. X
logically implies &/ (X1.i. &, for short) in case all
models satisfying all members of X satisfy /. This
is the concept, going back to Bolzano, which is
dealt with by Tarski in “On the Concept of
Logical Consequence”,? and which we take to be 2
satisfactory formulation of the notion of a formula
& following from X on “purely logical grounds”.
It should be remarked that our overall concern is
basically the problem discussed by Tarski towards
the end of his paper: Is there a sharp division of
terms into logical and extra-logical?

Elementary logic is axiomatizable. That is, there
is a proof procedure I such that X 1.i. & if and
only if X - /. The proof procedure is such that a
proof can involve only finitely many formulas, so if
X+ o then I'F o/ of X. That + provides an
axiomatization is equivalent to the conjunction of
two conditions which are frequently singled out.
The first is that |- is complete in the sense that the
formulas which are valid (i.e. true in all models)
are exactly those which are provable without
hypotheses. In other words, to say + is complete
is to say ¢ 1.i. & if and only if ¢ F o7. It follows
easily from completeness that for finite sets of
formulas I',I" 1.i. o if and only if I" - o/. The
second condition is compactness, which says that if
every finite subset of X has a model, then X has a
model. Compactness is equivalent to saying that if
X L.i. o then, for some finite subset I of X, I" 1.1,
/. Putting completeness and compactness

together, one has axiomatizability. The reader
should be warned that we have chosen terminology
convenient for our purposes but which is by no
means universally adopted. For example, “axiomat-~
izability” is frequently used to mean our complete-
ness.

The notions above were defined for the logic EL,
and we wish to formulate them for other logics.
Compactness is a purely model-theoretic notion,
and, as stated, it clearly makes sense for the most
general logics. Completeness can also be defined in
a fairly general setting. Identify the formulas with a
recursive set of natural numbers and take complete~
ness to mean that the valid formulas are effect-
ively enumerable. Then define a proof procedure
F for the logic: {#)...,%.,}F & in case
By — (By—...... (B, — &)...)isintheenu-~
meration of valid formulas; for an arbitrary set of
formulas X, let X F o/ in case I' F &/ for some
finite I' included in X. (We are assuming that the
logic has effective constructions corresponding to
the sentential connectives.) Again in the general
case compactness and completeness give axiomatiz-
ability: X 1.i o/ if and only if X + o/.

A very elegant proof of axiomatizability for EL,
due to Henkin, shows that every consistent set of
formulas has a model. Since in fact the model
produced is countable (i.e. finite or countably infin-
ite), one has a further corollary: If X has a model,
X has a countable model. This corollary is one
version of a well known and somewhat controver-
sial theorem, the L.owenheim—Skolem theorem. As
a special case, if a single formula &/ has a model,
then o/ has a countable model. We take this spe-
cial case® and say that a logic L has the Lowen-
heim—-Skolem property if every nonempty L-class
has a countable member.

This leads us to the first basic technical result,
an intrinsic characterization of elementary logic
due to Lindstrom:* Suppose L contains EL and
is either complete or compact; then if L has the
Lowenheim—Skolem property, L is equivalent to
EL. As an example, the logic L(J) mentioned
before is easily shown to have the Lowenheim~
Skolem property, using the submodel proof of
Tarski and Vaught.5 Thus since L(J) is not equiva-
lent to EL, L(I) is neither complete nor compact.
(Of course, to show that L([) was different from
EL we in effect pointed out that it was not com-
pact.) In Lindstrém’s theorem one does have to
make a few general assumptions about the logic L.
For example the L-classes must be closed under
intersection and complement. This of course



means that L has the sentential connectives. It is
not necessary, however, to assume that L has
something like quantification.® A few more basic
restrictions are needed, e.g., that isomorphic
models lie in the same L-classes. Also, for
completeness one needs to bring in the obvious
stipulations of effectiveness.

What Must a Logic Do?

Lindstrém’s result gives an exceedingly sharp
characterization of elementary logic as a maximal
solution to certain general conditions. Elementary
logic has for many years been taken as the standard
logic, with little explicit justification for this role.
Since it appears not to go beyond what one would
call logic, the problem evidently is whether it can
be extended. Thus one is tempted to look to Lind-
strom’s theorem for a virtual proof that logic must
be identified with elementary logic. The success of
this enterprise obviously depends on the extent to
which one can justify, as necessary characteristics
of logic, the hypotheses needed in the theorem,
principally completeness (or compactness) and the
Lowenheim—Skolem property.

A complete logic has an effective enumeration of
the valid formulas. The proof procedures pro-
posed for elementary logic were clearly sound in
the sense that they proved only valid formulas.
Godel established completeness by showing that
all valid formulas were provable by a standard
proof procedure. Second-order logic, which is an
extension of EL formed by allowing quantification
over predicate letters, is a classical example of a
logic with sound proof procedures, but which
demonstrably admits no complete proof proced-
ure. That is, there is no proof procedure com-
plete with respect to the intended semantics. The
standard proof procedures can be shown complete
with respect to certain semantics — but such non-
standard semantics have little independent in-
terest.

Soundness would seem to be an essential
requirement of a proof procedure, since there is
little point in proving formulas which may turn
out false under some interpretations. But it is
trivial to provide sound proof procedures: take
the null procedure, or take some finite set of
valid formulas. Of course the proof procedures
suggested for logics such as second order logic
enumerate an infinite number of valid formulas,
and perhaps appear to yield, in some further sense,
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a large and useful set of valid formulas; in particu-~
lar one may incorporate the comprehension schema
which says, for each formula & (x), that there
exists the class of those individuals x such that &/
(x).

The question is, should one demand that a logic
have a complete proof procedure’ In order to
answer this, it seems essential to be somewhat
more precise about the role logic is expected to
play. One can distinguish at least two quite differ-
ent senses of 10gic.7 The first is, as an instrument
of demonstration, and the second can perhaps be
described as an instrument for the characterization
of structures. In the present context, a logic L will
have this latter ability if, for example, there are /-
classes consisting, up to isomorphism, of a single
structure of mathematical interest. Second order
logic is striking in this respect. Such central the-
ories as number theory and the theory of the real
numbers seem to involve in their concepts a quan-
tifier over all subsets of the domain of elements,
and in fact they can be characterized up to iso-
morphism in second order logic. Even rather large
portions of set theory can be described categor-
ically by this logic.

Interesting as such a notion of logic is, it seems
perfectly reasonable to distinguish the other sense
of logic as a theory of deduction.® Elementary logic
cannot characterize the usual mathematical struc-
tures, but rather seems to be distinguished by
its completeness. Thus one is inevitably led to
ask whether it is a necessary stopping point,
or whether it can be extended to a richer logic
which is still a theory of deduction in the same
sense. Completeness, after all, is not just another
nice property of a system. When a deductive sys-
tem of whatever sort is presented, one of the most
immediate questions is whether it is (in the rele-
vant sense) complete, If all valid (or true) formulas
can be proven by the rules, then apart from prac-
tical limitations such as length and complexity,
they can be knomn to be valid (or true). This
seems to be as interesting and significant a criter-
ion as one could propose. Until the modern devel-
opment of logic, it was generally assumed that
mathematical systems had this property. One
now knows from Gidel’s work that the condition
is too stringent even for number theory, and it is
conceivable that it could have been too stringent
for logic. Thus one should not claim to see & priori
that a logic must be complete in order to be
a theory of deduction. The point is rather
that when it is discovered that the best known
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candidate satisfies such a condition, that tends to
establish a sense of logic and a standard to be
applied to competitors.

Two points concerning completeness should
be mentioned. The mere existence of an effect-
ive enumeration of the valid formulas does not,
by itself, provide knowledge. For example, one
might be able to prove that there is an effective
enumeration, without being able to specify one.
Normally one will exhibit axioms known to be
valid and rules known to preserve truth; preferably
these axioms and rules will be more or less self-
evident. Unfortunately these further conditions do
not appear amenable to exact treatment. A second
point, frequently noted, is that the completeness
proof for EL actually shows that a somewhat vague
intuitive notion, “valid EL formula”, coincides
with formal provability. It appears from inspection
of the axioms and rules that formally provable
formulas are intuitively valid; and intuitively valid
formulas are certainly true in (say) all arithmetical
models. Since the completeness theorem demonst-
rates that all formulas true in all arithmetical
models are provable in EL, one must conclude
that all three notions coincide in extension.

It is not out of the question that even in a theory
of deduction completeness might be sacrificed
for other advantages, such as greater expressive
power. The strongest example historically is per-
haps second order logic. One might claim that this
is in some sense an acceptable theory of deduction,
since in particular it yields all of the inferences of
EL. But in fact it is not accepted as the basic logic.
The expressive power of this logic, which is too
great to admit a proof procedure, is adequate to
express set-theoretical statements. Typical open
questions, such as the continuum hypothesis or
the existence of big cardinals, are easily stated as
questions of the validity of second order formulas.
Thus the principles of this logic are part of an
active and somewhat esoteric area of mathematics.
There seems to be a justifiable feeling that this
theory should be considered mathematics, and that
logic — one’s theory of inference — is supposed to
be more self-evident and less open.

Of course not all incomplete extensions of EL
are as strong as second order logic. But the other
known examples also tend not to look as natural,
and they, like second order logic, invite further
extension. In general, if completeness fails there
is no algorithm to list the valid formulas; so one
can expect many of the principles of the logic to be
unknowable, or determinable only by means of ad

hoc or inconclusive arguments. Clearly one will
hesitate to substitute other desirable features for
completeness in a theory of deduction. The nega-
tive evidence, together with the epistemological
appeal of the completeness condition, make it
seem reasonable to suppose that completeness is
essential to an important sense of logic.

Strangely, compactness seems to be frequently
ignored in discussions of the philosophy of logic. It
is strange since the most important theories have
infinitely many axioms. With only completeness it
seems possible, 4 priori, that a logic might not
prove all logical consequences of these theories.
Compactness amounts to the condition that if X
1i. o then I 1.i. & for some finite subset I" of X.
Since completeness ensures that if I' 1.i. &/ then
I'F o/, one may conclude that if the system is
both compact and complete, all logical conse-
quences of a set of hypotheses are provable. We
claim that that is the philosophical point at issue: if
something follows, it can be known to follow.

However, the primary question is whether com~
pactness by itself can be given a better justification
than was given for completeness, since we are
concerned to justify Lindstrém’s hypotheses
which require either completeness or compactness
(plus the Lowenheim~Skolem condition). It seems
to me that it is not all clear that compactness, per
se, can be defended. The compactness condition in
effect states that if &7 is implied by an infinite set
of assumptions, & is already implied by a finite
subset. The notion of implication here is of course
the semantical one, not provability. The condition
thus seems to state some weakness of the logic (as
if it were futile to add infinitely many hypotheses),
without yielding a compensating reward — such as
knowledge that .o/ is implied. To look at it another
way, compactness also immediately entails that
formalizations of (say) arithmetic will admit non-
standard models.

A second question, not strictly relevant to the
present purpose, is whether, having accepted com-
pleteness, compactness can be seen to be an essen-
tial property of a theory of deduction. Perhaps one
should first remark that to some extent complete-
ness implies compactness,” so in many cases the
question is dissolved, if not answered. We have
noted that compactness is sufficient in conjunction
with completeness to yield the desired conse-
quence: if X 1.i. & then X F /. It would appear
that if one had a proof procedure of the usual sort
the natural further condition to demand would be
compactness, .in order to get a reduction from an



infinite set of hypotheses to a finite subset. The
trouble is, it is not quite clear that one need
divide the labor in exactly this way. For example,
one might have a condition like: if X 1.1 &/
then Je(W, C X and W, 1i. &), where W, are
the recursively enumerable sets (in a standard
coding). If one also had an effective method for
enumerating the pairs (¢, &) such that W, 1.i, &,
these two properties would do much the same
work as completeness plus compactness. However,
it is easy to show that they in fact imply compact-
ness. This is no proof that compactness is
necessary, but it seems highly likely that if com-
pleteness is required, compactness will be
accepted. As for the main point, though, compact-
ness by itself seems much less defensible than
completeness.

This leaves the Lowenheim—Skolem property to
be considered. On the face of it, this property
seems to be undesirable, in that it states a limita-
tion concerning the distinctions the logic is capable
of making. Such a logic fails to make those distinc-
tions intended in the usual theories, for example
that there are uncountably many reals (“Skolem’s
paradox”). It is true that completeness also entails
a limitation on the power of a logic to discern
structures — a complete logic cannot, for example,
determine the natural numbers by a single for-
mula. But unlike completeness, the Léwenheim—
Skolem condition does not express any clearly
desirable property of a theory of deduction. It
might follow from some other conditions which
express desirable properties; in that case, it would
be those conditions which one should attempt to
defend. As it happens, it does follow from certain
conditions which I shall attempt to justify (The
existence of true but unprovable sentences in
arithmetic is undesirable; it follows, however,
from a defensible condition, namely that the
axiom system be effective.)

There are positions, perhaps some kinds of
finitism or countabilism, where the Lowenheim—
Skolem property is, if not desirable, simply true.
Obviously, under the general assumptions we have
made, this neatly resolves the question of what
logic is. However these positions are not merely
minority positions, but positions which ignore, or
drastically reinterpret, the overall body of science
and mathematics. Further, I doubt whether the
arguments that there are only countably many
things are very cogent in their own right. I cannot
pursue a discussion of these related positions here,
but will simply accept mathematics as it exists, and
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conclude that there is no @ prior reason to impose
the Lowenheim—Skolem condition on a logic.

Some Complete Competitors

Two examples of axiomatizable logics have been
discussed in the literature. The first, call it L (U),
adds an additional quantifier (Ux), which is read
“for uncountably many x”. Some time after the
logic was known to be axiomatizable, Keisler'®
proved that the following elegant set of axioms is
adequate:

Axioms of EL.

1 (V) (y)~(Uz)(z = x V2 = ),
countable is bigger than 2”.

2 (Vx) (oA — B) — [(Ux)f — (Ux)4B), “If all
ofs are s, and there are uncountably many
s, then there are uncountably many #s.”

3 (Ux)st(x) — (Uy)f(y), “Changing vari-
ables”.

4 (Ux) G — () (Us) V (Uy) (Fx)],
“If uncountably many things are put into
boxes, either some box gets uncountably
many members, or else uncountably many
boxes are used”.

“The un-

Modus ponens and generalization are the rules of
inference. Notice that all of the axioms remain
valid if the quantifier “for infinitely many «” is
substituted for (Ux). It is easy, however, to show
that there are formulas valid under this interpret-
ation which are not valid under the original inter-
pretation. Also note that the axioms do not assert
that there are uncountably many things.

By considering the contrapositive of Axiom (4),
one sees that it expresses the principle that a
countable union of countable sets is countable.
This may be considered a weak form of the
axiom of choice. Dropping choice, one can give
models for Zermelo—Fraenkel set theory in which
a countable union of countable sets is uncountable.
On the other hand, if one assumes certain forms of
the axiom of choice, such as the principle that a
countable set of nonempty sets has a choice func-
tion, then (4) follows readily.

Since a version of the axiom of choice is
expressed by the validity of a formula of L (U), if
one accepts L (U) one accepts this form of the
axiom of choice as a principle of logic. This is
especially interesting in view of the rather contro-
versial history of this axiom. The objections
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against it, however, now seem simply mistaken.
Probably the main objection was that it was sup-
posed that the choice function had to be given by
some law or definition. But since sets are complete-
ly arbitrary collections, this requirement is irrele-
vant. Except for formalists, who regard it as
meaningless, set theorists generally regard the
axiom of choice as true, and indeed practically
obvious. Whether or not it may be taken as a
logical principle is another matter — its infinitistic
nature might give pause.

The second example, L (C), has the quantifier
(Crx), the Chang quantifier:"* (Cx) /(x) is satis-
fied in a model just in case {x : &/ (x)is satisfied}
has the same cardinality as the universe of the
model. This logic, however, is complete and com-
pact only if one rules out finite models. One does
not have a simple and explicit axiom system for the
Chang quantifier, but there is one for this logic
with identity deleted.!? Curiously, it too assumes a
form of the axiom of choice. It would be interest-
ing to know whether there is some deeper connec-
tion between axiomatizable extensions of EL and
the axiom of choice. It is possible to give rather
trivial extensions of EL and prove them complete
and compact without using the axiom of choice.
Whether this is true for any interesting extensions
seems to be an open question.

Recently other examples of axiomatizable logics
have been found which serve also to illustrate
another generalization of quantifiers. Besides quan-
tifiers of one argument, one might want quantifiers
of two arguments. For example (Wx,y) o (x,y)
might mean that &/ (x,y) defines a well ordering.
This is a useful concept, but like (Ix), it will enable
one to characterize arithmetic categorically and so
cannot give a complete logic. Shelah!? has shown
that there is a whole category of quantifiers similar
to (Wx, y) which give axiomatizable logics. Un-
fortunately they involve technical notions of set
theory: for any regular cardinal A let (S*s,y)
&/ (x,y) mean that o (x,y) defines a linear order-
ing of cofinality A. The quantifiers S* give axio-
matizable logics, and moreover one can generalize
to certain sets of cardinals, and to the quantifiers
“‘confinality less than A”, and still get axiomatizable
logics.

One result to hope for is that there might be a
maximum logic L, that is, an axiomatizable logic
containing all others. This is immediately seen to
be impossible since any logic L has only countably
many L-classes, while the various logics of Shelah
define an unlimited number (i.e. a proper class in

number) of classes of models. More interesting is
the observation that our first two examples are
incompatible: L (U) and L (C) have no common
extension.

One might wonder how these extended logics
could or would be used. Consider number theory.
An obvious axiom to state using (Ux) is that there
are only countably many numbers. Or, using the
Chang quantifier, one can say that the set of pre-
decessors of a number is of smaller cardinality than
the universe. It seems possible that these axioms
might yield new theorems in the original language
of number theory, but they do not. The proof is
easy for the first axiom, but is not at all trivial for
the second.'® In number theory there is no reason
to suppose that all such proposals will yield con-
servative extensions. However, in set theory it is
clear that one will never get new theorems, at least
if the axioms of the logic are set theoretical prin-
ciples. This is because any proof in the strong logic
can be translated into an ordinary proof which uses
principles of set theory. Although it is conceivable
that some logical axiom independent of set theory
could be seen to be true, it is probable that it would
be clearly a set theoretical principle. Thus extended
logics are probably best regarded as changes in the
boundary which demarcates as logic a part of set
theory.

Can the Competitors Be Rejected?

There is a serious objection against the quantifier
“for uncountably many x”’. One would expect that
if this were a legitimate quantifier, the quantifier
“for infinitely many »” would also be acceptable;
but no complete logic can contain the latter quan-
tifier. Specifically, the cardinal ¥, plays a role in
the model theory of any complete logic containing
the quantifier (Ux) which cannot be played by the
smaller cardinal Ny. One can say “The universe
has cardinality less than N|”, but one cannot say
“The universe has cardinality less than Rg”. One
cannot even have a formula, using various predi-
cate letters, which is satisfiable exactly in finite
universes. The fact that one can say so much
more about ¥; than ¥y seems to me to be a state
of affairs sufficiently unnatural to discredit (Ux) as
a logical notion.

If the uncountable is no logical notion, a line of
argument is suggested which invokes Lindstrém’s
theorem. This theorem entails that any complete
extension of elementary logic must have something



like an “‘axiom of uncountability”, that is, it must
have a formula with uncountable models but no
countable models. If the uncountable is no logical
concept, one is tempted to regard this consequence
as a proof that there are no complete logics extend-
ing elementary logic. However that would be a
mistake. Elementary logic already has “axioms of
infinity” in a similar sense. That is, there are
formulas with models of all infinite cardinalities
but with no finite models, even though “infinite”
is not a logical concept in the sense of there being a
quantifier expressing “for infinitely many x”.

Being able to distinguish the uncountable by
means of axioms of uncountability is evidently a
much weaker property than having a quantifier
“for uncountably many x”. Further, if one allows
even weaker criteria, elementary logic is already
able to distinguish the uncountable from the coun-
table. Call a theory with infinite models categorical
in the cardinal N if all models of cardinality X are
isomorphic. It is known that there also theories
categorical in N but in no uncountable cardinal.
There are also theories categorical in all uncoun-
table cardinals but not in Np; theories categorical
in all infinite cardinals; and theories categorical in
no infinite cardinals. Morley’s theorem demon-
strates that for infinite cardinals, these are the
only possible categories. In this sense, elementary
logic cannot distinguish two uncountable cardi-
nals, although it can distinguish the countably
infinite from the uncountably infinite.

From this extensional viewpoint, Shelah’s quan-
tifier “cofinality w” fares considerably better than
the quantifier (Ux). One has axioms of uncount-
ability in precisely the same sense one has axioms of
infinity, namely formulas with predicate letters
satisfiable in, and only in, the uncountable uni-
verses. Other gross properties seem reasonable
also: just as one cannot have formulas satisfiable
exactly in finite universes, this logic has no formu-
las satisfiable exactly in countable universes. The
obvious objection against the Shelah logic is that
one would never have supposed that a technical
notion like cofinality was a logical concept. Unless
it could be shown equivalent to some more
palatable notion, this must remain a serious objec-
tion.

Continuity of the Standard Quantifiers

If one considers, instead of the entire logic EL, the
standard quantifiers, it would appear that there
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must be some sense in which V and 3 are very
simple and primitive. It may be possible to state
some natural condition which expresses this sim-
plicity, and which, at the same time, rules out
quantifiers one feels are no part of logic. To start
with, V and 3 may be regarded as extrapolations of
the truth functional connectives A and V to infinite
domains. To see how one can make such extrapo-
lations, take the infinite list of sentential letters
Py, Py, Py, ..., and suppose one is given an arbi-
trary truth assignment ¢, that is, a function which
assigns a truth value #(P;) to each letter P;. By the
truth table rules, + may be extended to assign a
value (o7} to each formula & of sentential logic.
Consider, for increasing 7, the values z(Py A P
A...A P,)assigned to the finite conjunctions. One
sees at once that no matter what assignment ¢ is, the
limit lim # — oo t(Po APy A ... A P,) has a clear
value: there is a finite point N such that the con-
junction (Py A Py A ... A Py) is assigned a value
HPoAPLA...APy), and for all m greater
than N,t(PoAPyA...AP,) is the same as
t(Po APy A ... A Py). Tt is easily seen that exactly
the same property is true of finite disjunctions.
Compare another familiar binary connective,
the biconditional «. It is also commutative and
associative so that parentheses may be dropped,
and (Py +» Py — ... & P,) considered to be a
formula. However, in this case there is no evident
limit of the values t(Pg = Py — ... <= P,) as n
increases. This is not merely due to the unfami-
liarity of the construction. If, for example, ¢(P;) is
L (falschood) for all 7, then the value of
f(Po P ..o P)is T for n even, and L
for n odd. There is simply no well-defined limit
value to be used for an infinite quantification.
These considerations can be restated in the lan-
guage of quantifiers and predicates. Suppose a
model M is given which interprets a one-place
letter F. In each finite submodel ¥ with universe
{a0y ..., an},VxF(x) has a truth value, the same
value as (F(ap) A F(m) A... A F(a,)) hasin 7.V
is continuous in the sense that for each model M
there is a finite submodel 7, in which VxF(x) takes
a truth value and holds that truth value for all
submodels K between 7 and M, including M.
Thus if one thinks of the model M as being
revealed step by step, there is a finite portion at
which VxF(x) assumes a truth value, and holds
that truth value no matter how much the model is
further revealed, and even if it is totally revealed.
This is the continuity condition we wish to
isolate, and of course the quantifier 3, as well as
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V, is continuous in this sense. However if (Qx) is
any quantifier such that (Qx)F(x) agrees with
(F(ap) <~ F(a) © ... =@ F(a,)) in models
with universe {ag,41, ...,as}, then (Qx) must
exhibit a sort of discontinuity: For certain M,
(Ox) F(x) will oscillate back and forth in truth
value as one considers larger and larger finite sub-
models, and the value of (Qx) F(x) in infinite
models will be no direct extrapolation of its value
in finite submodels. It should be noted in passing
that there is another possible kind of discontinuity
which occurs, for example, with the quantifier “for
infinitely many «”. Since (/x) (x = x) comes out
false in all finite models, it has a definite limiting
value — the trouble is that its value in an infinite
model is not equal to this limit.

We have exhibited a type of continuity for the
basic quantifiers V and 3 in terms of the behavior
of the formulas VxF(x) and 3xF(x), where F is
any one-place letter. Not only are the basic quan-
tifiers continuous, but every formula of elementary
monadic logic, which is the subsystem of EL using
one-place relations, is continuous in this sense.
Moreover one has an exact converse: Given any
quantifier'® of monadic type, if it is continuous in
the sense sketched above, it is definable in elemen-
tary monadic logic.

It is clear that the standard quantifiers can be
tested for truth in certain ways. Let us examine
more closely the exact sense in which 3 has oper-
ational meaning. Suppose one has an intuitively
decidable one-place predicate F, interpreted (say)
as “is a frog”. One wants to determine the truth of
dxF(x) in the standard model — the actual world.
One proceeds along, examining specimens, and at
some finite point one reaches a portion of the
model in which 3xF(x) comes out true; and at
that point one knows that it is true in the whole
model no matter what the rest of the model is like.
(We are assuming, for purposes of the example,
that the world is infinite.) It is easy to formulate
this criterion precisely and show that any such
quantifier is continuous.'’

This test does not work for V; instead, if VaF(x)
is ultimately false, its falsehood can be known at a
finite point. Another way to put it is that one has
only half a test for 3: if JxF(x) is true, one can
actually find it out in finitely many steps; but if
JxF(x) is false, one may never be sure, short of
exhausting the entire model. One might consider
the stronger demand that the correct truth value
always be ascertainable at a finite point, even
though V and 3 do not satisfy such a stringent

condition. But it is easy to show that only trivial
quantifiers result.

In summary, those quantifiers which are par-
tially decidable in the same sense as 3 are all
continuous; their complements are the quantifiers
partially decidable in the same sense as V, and are
also continuous. The notion of continuous quanti-.
fier seems to be the most natural symmetrical
condition containing both V and 3. We have
remarked that any continuous monadic quantifier
is definable in elementary monadic logic, hence in
EL. For non-monadic continuous quantifiers,
however, one must appeal to completeness of the
resulting logic to conclude that they are definable
in EL. In fact, one can give binary quantifiers
which are partiaily decidable in the same sense as
3, but which give incomplete logics. It would
seem, in conclusion, that the major properties of
the standard quantifiers of epistemic significance
can be precisely captured, and any such quantifier
shown to be definable in EL, invoking complete-
ness only for non-monadic quantifiers.'®

What about Complex Formulas?

One sees at once that no such simple criteria as
continuity apply to an arbitrary formula of the full
clementary logic of relations. For example, there is
a formula &7, with a single binary letter G, which
says G is a linear ordering without last element. .o/
has only infinite models, so given a model M of
o/, &/ must be false in each finite submodel of M.
One can also exhibit other kinds of discontinuity:
There is a formula # which says that G is a
function mapping part of the universe one-one
onto the remainder; # has infinite models, and
for any such model N, # will be true in some
finite submodels, and false in others.

Continuity does not apply to arbitrary complex
formulas of EL, and the best one can say is that a
complete logic based on continuous quanti fiers
does not extend EL. Whether this formulation is
good enough is open to question. How does one,
for example, know that a given logic can be defined
by adjoining quantifiers to EL? Put this way, the
question does not pose a problem. We have taken a
quantifier to be an arbitrary class of models of a
fixed type, closed under isomorphism of models,
which amounts to saying that a totally arbitrary
formula can be taken to be a quantifier (see note
18). The assumption that the logic be based on
quantifiers seems to involve no great restriction,



for, given a logic L, one can take each formula of L
as a quantifier and adjoin it to EL, getting L*.
Trivially, L C Lx, and it is reasonable to suppose
L = Lx, because otherwise L would not be closed
under the familiar constructions with connectives
and the iteration of quantifiers.

The problem, then, is not that it is unreasonable
to assume a given logic L is constructed by adjoin-
ing quantifiers to EL. Rather, the problem is to
give some intrinsic justification for the particular
method by which complex formulas are built up
from the primitives. That is, suppose one is pre-
sented with a logic L, defined by adjoining quan-
tifiers to EL, but which cannot be defined by the
adjunction of continuous quantifiers to EL. How
does one know that there might not be some other
acceptable way of generating the logic from simple
quantifiers? Second order logic is in a sense gen-
erated from thé standard quantifiers — but one
applies them to predicate letters as well as to
individual variables.

Complex formulas with relations no longer have
the operational simplicity of the basic quantifiers,
or the finitistic nature of monadic formulas. Thus
it is not easy to see a suitable criterion to apply
directly to arbitrary formulas. And, in the absence
of such a criterion, it is not easy to predict what
primitives and operations might have a clear
enough meaning to be used in constructing a
logic.

These seem to me to be serious objections which
pinpoint the weakness in this argument for the pri-
macy of £L. I do not know how to overcome them,
nor am I confident that there is a completely water-
tight argument for EL. Everything considered, I
think it must be conceded that the considerations
which gave a rather satisfactory characterization of
elementary monadic logic do not provide a compar-
ably definitive characterization of the full logic. But
they do, I believe, give some insight into the reasons
EL has been taken as standard, and the reasons it
appears natural and primitive in comparison with
the known extensions.

Logic and Ontology

The reasons for taking elementary logic as stand-
ard evidently have to do also with certain impre-
cise — but I think viral — criteria, such as the fact
that it easily codifies many inferences of ordinary
language and of informal mathematics, and the fact
that stronger quantifiers can be fruitfully analyzed
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in set theory, a theory of £L. It is not surprising
that in practice elementary logic has been taken as
logic. Yet the criteria which justify this choice do
not justify the use to which elementary logic is
frequently put. It should be recalled that a tremen-
dous amount of weight has been thrown on the
alleged distinction between logic (i.e. elementary
logic) and mathematics. Perhaps the most extreme
example is Skolem,'® who deduces from the Low-
enheim-Skolem theorem that “the absolutist con-
ceptions of Cantor’s theory” are “illusory”. I think
it clear that this conclusion would not follow even
if elementary logic were in some sense the true
logic, as Skolem tacitly assumed. From the abso-
lutist standpoint, elementary logic is not able to
preserve in the new structure all significant fea-
tures of the initial structure. For example, the
power set of w is intended to contain al/ sets of
integers. It should also be noted that one has a
similar problem for ordinary number theory, and
even for certain weak decidable subtheories of
number theory: there are nonstandard models,
countable as well as uncountable.

Elementary logic has also been invoked in con-
nection with ontology by Quine, who has argued
that one is to look to the range of the quantifiers to
uncover one’s ontological commitments. There are
difficulties in interpreting this prescription which
we shall not dwell on here, but at a very basic level
one can question his doctrine by proposing differ-
ent logics. One challenge he considers® is a logic
due to Henkin, which has formulas with “branch-
ing quantifiers” such as 3;3; F(u,v,x,y), which is
to be interpreted, using Skolem functions, as
Af AeVuVxF(u, fu, x,gx). This looks very much
like the Skolem form of a formula of EL, the
difference being that v is a function of » alone,
and y is a function of x alone. To express such a
formula in EL one naturally quantifies over func-
tions. Thus such a formula as 3’;3; Flu,0,%,y)
appears to blur the distinction between those
objects which are quantified over, and those
which are not. Quine rejects the Henkin logic
primarily?! because it is not complete (it turns
out, surprisingly, that in it one can express the
quantifier “for infinitely many x”). But we have
a number of “deviant” logics which are axiomatiz-
able and allow us to do exactly this sort of thing:
we can say that there are countably many helium
atoms without quantifying over anything except
physical objects. Quine does concede that some
extensions of EL are complete, and mentions the
example of a logic which adds finitely many valid
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formulas. However, no indication is given how the
complete extensions of EL are to be ruled out.

To go to another extreme, one can formulate £L
with modus ponens as the sole rule of inference.
By means of a simple translation one may consider
EL, and theories based on it, to be theories in
sentential logic. Sentential logic certainly has
many attractive technical properties to recommend
it. And perhaps one’s ontological commitment
would be to the two truth values.

This is clearly an implausible suggestion, and it
is not hard to see why. Evidently our conceptual
scheme is such that we think of the world in terms
of objects and relations. Sentential logic deals with
whole sentences and, unlike EL, suppresses this
prior analysis and prior commitment. Of course EL
has quantifiers as well as individual variables and
relation letters. The particular choice of quanti-
fiers must be explained, and we have attempted to
give illuminating reasons why the standard quan-
tifiers are singularly primitive. One can consider
stronger quantifiers, but one does not have as clear
a grasp of their meaning, and they usually seem to
demand further explanation. ’

This is not to claim that it is impossible to
operate with certain quantifiers, such as “for infin~
itely many x”, or equivalently, “for finitely many
x7. It is true that in this case the resulting logic is
not complete and invites further extension. These
are good reasons to conclude that the logic is not as

satisfactory as EL, but they do not seem to bear on
' the ontological issue. Perhaps one could under-
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criticism and comments.

1 An L-class has models of a fixed finite type, e.g.,
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2 See A. Tarski, Logic, Semantics, Metamathematics,
Clarendon Press, Oxford, 1956, pp. 409-20.

3 For monadic logics it does matter whether one
assumes the Lowenheim—~Skolem property for sin-
gle formulas or for infinite sets of formulas. See my
paper, ‘“The Characterization of Monadic Logic”,
The Journal of Symbolic Logic 38 (1973), 481-8.

4 See Per Lindstrom “On Extensions of Elementary
Logic”, Theoria 35 (1969), 1-11. It should be noted
that Harvey Friedman later rediscovered these the-
orems and pointed out their philosophical interest.

stand “for finitely many x” in some intuitive
sense as a primitive notion and work quite well
within this logic. Many of the rules would
be sufficiently clear — for example if &/(x) and
2B(x) are each true of finitely many ¥, so are (&
(x) A B(x)) and (L (x) V B(x)). The user of this
logic might not have in mind any particular
analysis of “finite”. If so, it would seem incorrect
to attribute to him some such analysis in terms of
an ontology of sets, or of numbers and functions.
Which of several possible analyses should be
attributed to him? '

It may even be fair to say that mathematicians in
effect used such quantifiers before the develop-
ment of set theory. Since Cantor and Dedekind,
one has a reasonably clear and quite general theory
of “finite”, “infinite”, and related notions. In view
of the existence of such a general theory, there is
little point in taking notions such as “finite” as
primitive. The conceptual scheme of set theory
deals with objects (sets), relations (membership
and identity), and uses the standard quantifiers.
Formulas of EL directly codify this scheme, and,
so interpreted, they reflect ontological assump-
tions correctly. But to appeal to criteria such
as completeness to justify the logic, and then
mechanically use the logic to “assess a theory’s
ontological demands”, seems to stand the matter
on its head. It also leads, via the Lowenheim—
Skolem theorem, to pointless puzzles about
ontological reduction. These, however, have been
discussed at length elsewhere.?

5 See ‘“Arithmetical Extensions of Relational Sys-
tems”, Compositio Mathematica 13 (1957), 81-102.

6 Something like quantification is used with regard
to the “upward Lowenheim-Skolem property”
(Theorem 3) and in Corollary 2 of Lindstrém’s
paper cited above.

7 D. A. Martin has emphasized this distinction to me.
Of course there are other senses of logic, for ex-
ample, as “ascience prior to all others, which contains
the ideas and principles underlying all sciences”.
See Kurt Godel, “Russell’s Mathematical Logic”,
in Philosaphy of Mathematics, Benacerraf and Put-
nam (eds.), Prentice-Hall, Englewood Cliffs, N.J.,
1964, p. 211.

8 I concentrate only on certain gross features of a
theory of deduction. This is not to deny that finer
structure — the particular rules of inference and
axioms ~ may be highly important.
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North-Holland, Amsterdam, 1969, p. 283.
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L(C) and L(U) characterizes {w, (). Martin pointed
out that one can modify the quantifier C to a
quantifier C' which is C in universes of cardinality
< Ny, and is V in larger universes. The general-
ized continuum hypothesis was used to prove only
special cases of the axiomatizability of C, and it
turns out it is not needed for C'. Also C' is axiomat-
izable without restriction to infinite models. Our
argument above still holds for L(U) and L (C').
See Bell and Slomson, op. cit., pp. 284-5.
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example, suppose 2 is the class of models of type
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(G), where G is binary and is interpreted in the
model as a well-ordering of the universe. One
adjoins this 2 to EL by introducing a symbol g,
and adding to the definition of formula the clause:
0,09 (vi,0;) is a formula if /(v,v) is.
M = Qu,, 0:8 (0,0} is defined 1o mean Mx* € 2
where the universe of Mx is the universe of M,
and the binary relation of Mx is {(x;, %) M F
of (%,%)}. Thus M= Qo;,v; of(v;,0) just in
case #/(v;,v;) defines a well ordering over the
universe of M; this Q is just the quantifier W
mentioned in passing in Section 3. For further
discussion see my “Continuity and Elementary
Logic”, The Journal of Symbolic Logic 39 (1974),
700-16.

Let # be a class of finite models satisfying:
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partially decidable in the same sense as 3 appears to
fall under this definition, for suitably chosen recur-
sive R.

A logic based on continuous quantifiers satisfies the
Léwenheim—Skolem condition, so if it is complete,
it is EL. Note that if one demands a uniform finite
bound (uniform continuity) one need not invoke
completeness. See especially theorems 2, 4, 5 and 7
of my paper cited in note 17.

See p. 47 of Thoralf Skolem, Abstract Set Theory
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Dame, 1962).

See pp. 89-91 of W. V. Quine, Philosophy of Logic,
Prentice-Hall, Englewood Cliffs, N.J., 1970.
However, in an earlier paper Quine also notes that a
certain typical construction which one would for-
mulate with the Henkin quantifier “is not after all
very ordinary language; its grammar is doubtful”.
See p. 112 of “Existence and Quantification”, in
Ontological Relativity and Other Essays, Columbia
University Press, New York, 1969,

See my “Ontological Reduction”, The Journal of
Philosophy 68 (1971), 151-64.




