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A FUNCTIONAL CALCULUS OF FIRST ORDER BASED ON
STRICT IMPLICATION

RUTH C. BARCAN

The following system' is an extension of the Lewis calculus S2 to include quan-
tification.?

Primitive symbols.

() {parentheses}.

~ {negation}.

¢ {modal operator}.

- {conjunction}.

(3 ) {existential quantifier, the blank space replaced by an appropriate vari-
able}.

Propositional variables p, ¢, 7, 8, ¢, D1, q1, "1, 81,8, 2y Puy Qns Ty Sy la,

Functional variables of degree 1,2, - -+ , n, - - - : monadic functional variables
F,,G, H, Fi, --- ; dyadic functional variables F:, G, H, F;, - ;n-adic
functional variables F, Gn, Hoy Fiu o+ 5« -+

Formula is defined as any finite sequence of primitive symbols.

Syntactic notation. Greek letters will be used as variables in the syntax
language. Upper case Greek letters A, B, T, E, H, A, By, Iy, Ei, Hy, -+,
A., B., T, E., H, represent formulas. Lower case Greek letters «, 8, v,
8, ar, Bi, Y1, 01, =+, @, Bn, Yn, 0 represent individual variables unless
otherwise specified.

Well-formed formula. Write “wff”’ for ‘“well-formed formula” and “wf” for
“well-formed.” A wiff is defined recursively as follows;

A propositional variable is wf.

Blas, oz, -+ , ay) is wf where g is an n-adic functional variable and a1, as,

-+, an are individual variables.

If A and B are wif’s then ~A, O A, (A-B), (Ha)A are wif’s.

The only wif’s are those which follow from this definition.

Capital Greek letters will hereafter be restricted to the representation of
wit’s.

Bound and free individual variables. An occurrence of an individual variable
ain a wif A is a bound occurrence if it is in a wf part of A of the form (da)B.
Otherwise it is a free occurrence.

Received September 28, 1945.

1 This paper is an extract from a dissertation being written in partial fulfiliment of the
requirements for the Ph.D. degree in Philosophy at Yale University.

The method for constructing this system was suggested in part by Alonzo Church’s Intro-
duction to mathematical logic, Princeton University Press, 1944.

2 Lewis and Langford, Symbolic logic, The Century Co., 1932.
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RUTH C. BARCAN

Definition schemata. =4; between two expressions indicates that the for-
mula on the left abbreviates the formula on the right.

(@A =45 ~Ha)~A.

(A v B) =4; ~(~A-~B).

(A 3 B) =¢t ~O(A-~B).

(A =B) =4: (A 3B)-(B-34)).
(A D B) =ar ~(A-~B).

(A = B) =41 ((A D B)-(B D 4)).

The outermost parentheses will he omitted. The dot for conjunction will
also be omitted wherever unambiguous. Rules will be distinguished by Roman
numerals.

Axiom schemata.

1. (AB) 3 (BA).

2. (AB) 3 A.

3. A 3 (AA).

4, (AB)T 3 A(BD).

5. ((A3B)(B=3T)) 3(A3D).

6. (A(A 3 B)) 3 B.

7. O(AB) 3 OA.

8. (e)A 3 B, where a and B are individual variables, no free occurrence
of ain A is in a wf’d part of A of the form (8)T" and B results from the
substitution of B for all free occurrences of « in A.

9. (a)(A D B) 3 (()A D (a)B).

10. A 3 (@) A, where « is not free in A.

11. OE@)A 3 (Ha)OA.

Rules of inference.

I. From A and A 3 B infer B (modus ponens, abbreviate: mod pon).

II. From A and B infer AB (adjunction, abbreviate: adj).

II1. If A, B, and T are such that E results from I' by the substitution of B
for one or more occurrences of A in T, and if A = B, then infer I' from
E and E from I' (substitution, abbreviate: subst).

IV. If B is the result of substituting the individual variable g8 for all free
occurrences of « in A then infer (8)B from A. (generalization, abbre-
viate: gen)

Proof of a wif A is a finite list of wif’s A;, Az, ---, A, such that each A, is

an axiom or derivable from the preceding formulas of the list by applying any
of the rules of inference. A is provable if it is the A, of such a list.

“A is provable” will be abbreviated: |-A.

Correspondence with Lewis system S2. Axiom schemata 1-7 correspond to
B1-B4, B6-B8.* B5 is derivable as shown by McKinsey." Rules I, II, and

3 See Lewis and Langford, p. 493.
4J. C: C. McKinsey, Bulletin of the American Mathematical Society, vol. 40 (1934), pp.

425-427.



FUNCTIONAL CALCULUS BASED ON STRICT IMPLICATION 3

IIT correspond to Lewis’s rules of inference, adjunction and substitution (a).}
We can dispense with substitution (b) since we have an infinite list of axioms.

The following notational changes will be assumed as made when referring to
the theorems of Symbolic logic: Lewis’s propositional variables replaced by
capital Greek letters, and = replaced by = or =qr according as an equivalence
or a defining relation is indicated, and dots for brackets and brackets replaced
by parentheses.

When reference is made in the proofs to a theorem in Symbolic logic the num-
ber will be italicized. Otherwise the numbers refer to the list of axioms and
theorems developed here.

Some rules useful for facilitating proofs.

V. If - A 3 Bthen| A = (AB).
F(A3B)=(A-3(AB) 16.33
FA3B hyp

[ (AB) 3 A 2
F (A 3 (AB))((AB) 3 4)  adj
A = (AB) def

VI. IfF A3 Bthen| OA 3 OB.
FA3B hyp
A = (AB) A%
 O(AB) 3 OB 19.13

FOA 3 OB subst
Assume that each step in the following proofs is preceded by |-.

VII. If A 3 Bthen} ~O~A 3 ~O~B.
A 3B  hyp
A = (AB) A\
~O~(AB) 3 ~O~B  19.%4
~O~A 3 ~O~B  subst

VIII. IfI—A1 3 Az,l-Az 3 M, L ,"An—l =3 A,.theni—Al —3 A,,.
(A1 3 A2)(A: 3 As)  hyp, adj
((A1 3 A2)(Az 3 Ag)) 3 (A1 3 Ag) 5
A 3 A; mod pon
(A1 3 A9)(As 3 Ay hyp, ad]
(A1 3 A)(As 3 A)) 3(A13A) 5
A3 A mod pon

A 3 A, mod pon

5 See Lewis and Langford, p. 125.
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IX. If A 3 Band |- T 3 E then |- (AT) 3 (BE).
((A 3 B)(I' 3 E)) 3 ((AT) 3 (BE)) 1968
(A 3 BY(I' 3 E) hyp, adj
(AT) 3 (BE) mod pon

X. If F A 3 B then F ~B 3 ~A.
A 3B hyp
(A 3B)3(~B3~4A) 1243
~B 3 ~A mod pon

XI. If|- A = Bthen| ~A = ~B.
(A3B)(B34) 3((A3B)(B34) 121
((A 3 B)(B3A) 3 ((~B3A)(~A3~B)) 1244, subst
(A 3 B)(B -3 A) hyp, def
(~B 3 ~A)(~A 3 ~B) mod pon
~A = ~B 12.15, subst, def

XII. IfFA-3Band} A -3 Ithen | A 3 (BT).
((A3B)(A3T)) 3(A3(BI) 1961
(A 3B)(A3T) hyp, adj
(A 3 (BD)) mod pon

13. F @a)A = ~(a)~A.
~~Fa)A = ~(a)~A 121, def, 12.3, subst, XI
Ha)A = ~(a)~A 12.3, subst

14, F (3a)~A = ~(a)A.
Ha)~A = ~(a)~~A 13
Ha)~A = ~(a)A 12.3, subst

15. F ~Ha)A = (a)~A.
H)A = ~(a)~A 13

~Hx)A = ~~(a)~A XI
~Ha)A = (a)~A 12.3, subst
16. [ B 3 (Ha)A, where B, A, and « are as in 8.

()~A 3 ~B 8

~~B 3 ~(a)~A X

B 3 ~(a)~A 12.3, subst
B 3 (Ha)A 13, subst

17. F (@A 3 (Fa)A.
(A 3 A 8
A 3 (o)A 16
(A 3 (Ha)A v



18.

19.

21.

23.

XIII.

FUNCTIONAL CALCULUS BASED ON STRICT IMPLICATION

F (@~0~A 3 ~O~(a)A.
OF@a)~A 3 ) O~A 11
~Ha)O~A 3 ~O(Ha)~A X
()~O~A 3 ~OHa)~A 15, subst
()~O~A 3 ~O~(a)~~A 13, subst
()~O~A 3 ~O~(a)A 12.8, subst

F (2)(A 3 B) 3 ((0)A 3 (a)B).
()(A D B) 3 (()A D ()B) 9
~O~(a)(A DB) 3 ~O~((@AD(a)B)  VII
(@)~O~(A DB) 3 ~O~(a)(A DB) 18
()~O~(A D B) 3 ~O~((a)A D ()B) VIII
(e)(A 3 B) 3 ((@)A 3 ()B) 18.7, subst

I—:A = (a)A, where « is not free in A.
A3 (A 10
()A 3 A 8
(A 3 (@A) (@A 3 A) ad]
A = (A def

F A = (Ja)A, where a is not free in A.
~A = (@)~A 20, hyp
~~A = ~(a)~A XI
A = o)A 12.8, subst, 13

F (a)(A 3 B) 3 (A 3 («)B), where a is not free in A.
(@)(A 3 B) 3 ((@)A 3 (@)B) 19
(e)(A 3 B) 3 (A 3 (2)B) 20, subst

F (2)(A 3 B) 3 (o)A 3 B), where « is not free in B.
(a)(A 3 B) 3 (a)(A 3 B) 12.1
(a)(A 3 B) 3 (a)(~B 3 ~A) 12.44, subst
(@)(~B 3 ~A) 3 (~B 3 (@)~A) 22
(@)(A 3 B) 3 (~B 3 (0)~A) VIII
(@)(A 3 B) 3 (~(a)~A 3 ~~B)  12.44, subst
(2)(A 3 B) 3 (o)A 3 B) 13, 12.3, subst

If F A -3 B then | (0)A 3 (a)B.
A 3B hyp
(a)(A 3 B) gen
(2)(A 3 B) 3 ((0)A 3 (e)B) 19
(e)A 3 ()B mod pon

F (a)(A = B) 3 (0)A = (a)B).
(A3B)(B-34)3(A3B) 2
((A3B)(B34) 3(B34) 1207
(@)((A 3 B)(B 3 A4)) 3 (x)(A3B) XIII
(@)((A 3 B)(B 3 4) 3 (@(B34) XIII
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(@)(A 3 B) 3 (@A 3 (@)B) 19

(@)(B 3 4) 3 (@B 3 (2)4) 19

()((A 3 B)(B 3 4)) 3 ((0)A 3 (¢)B)  VIII

(0)((A 3 B)(B 3 A)) 3 ((0)B 3 ()A)  VIII

(@)((A 3 B)(B 3 4)) 3 (@A 3 (9)B)((@)B 3 (a)A))  XII
()(A = B) 3 ((0)A = (2)B) def

XIV. If} A = Bthen| (a)A = (a)B.
A =3B hyp
()A = (a)A 12.11
()A = (a)B subst

25. F ()(A 3 B) 3 (Ha)A 3 (Ha)B).
(@)(A 3 B) 3 (0)(A 3 B) 121
(@)(A 3 B) 3 (a)(~B 3 ~A)  12.44, subst
(@)(~B 3 ~A) 3 (()~B 3 (a)~A) 19
((@~B 3 (@)~A) 3 (~(a)~A 3 ~(a)~B 1243
(@)(A 3 B) 3 (~(a)~A 3 ~(a)~B)  VIII
(@)(A 3 B) 3 (o)A 3 (Fx)B) 13, subst

XV. If - A 3 Bthen} (3a)A 3 (a)B.
Like XIII, using 25 in place of 19.

26. F («)(AB) 3 ((@)A (a)B).
(AB) 3 A 2
(e)(AB) 3 (x)A XIII
(AB) 3 B 12.17
(2)(AB) 3 (a)B XIII
()(AB) 3 ((@)A (a)B) XII

27. F (3a)(AB) 3 ((Ha)A (Ha)B).
Like 26 using XV in place of XIII.

28. F ((@)A (&)B) 3 (a)(AB).
()A 3 A 8
()B 3 B 8
((@)A (0)B) 3 (AB) IX
(@)(((0)A ()B) 3 (AB)) 3 (((a)A (a)B) 3 (a)(AB)) 22
(@)(((@)A (¢)B) 3 (AB))  gen
((@)A (@)B) 3 (a)(AB) mod pon

29. F (@A (0)B) = (a)(AB).
(((2)A (2)B) 3 (2)(AB))((«)(AB) 3 ((2)A (2)B)) 28, 26, adj
(A ()B) = (a)(AB)  def

30. F o)A 3 (a)(A v B).
A3(AvB) 132
(o)A 3 Ha)(A v B) XV



31.

32.

33.

34,

35.

36.
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F @x)B 3 (a)(A v B).
Like 30 using 13.21 in place of 13.2.

F (Qa)A v (3a)B) 3 (Ja)(A v B).
(Aa)A 3 (Ha)(A v B))(x)B 3 (a)(A v B))) 3
(Ba)A v (Ha)B) 3 Ha)(A v B)) 19.65
(F)A 3 a)(A v B))((a)B 3 (Ja)(A v B)) 30, 31, adj
(Ha)A v 3a)B) 3 Ha)(A v B) mod pon

F @a)(A v B) = (Qa)A v (Ja)B).
((@)~A (a)~B) = (a)(~A ~B) 29
~(~(@)~A v ~(a)~B) = (e)~(~~A v ~~B)

14.21, subst, def
~~(~(a)~A v ~(a)~B) = ~(a)~(~~A v ~~B) X1
(~(@)~A v ~(a)~B) = ~(a)~(A v B) 12.3, subst
(Ha)A v 3a)B) = 3a)(A v B) 13, subst

F (@A 3 (@)(A v B).
Like 30 using XIII instead of XV.

F (@)B 3 (0)(A v B).
Like 31 using XIII in place of XV.

F (@A v (9)B) 3 («)(A v B).
Like 32 using 34 and 35 in place of 30 and 31.

Extension of the rule of substitution.

XVI.

XVII.

XVIII.

37.

If the wif’s T, E, and B are such that B results from A by the substitu-
tion of E for one or more occurrences of T' in A and if (eu)(ap) ---
(ax)(T' = E) where a1, a2, - -+, a, is a complete list of the free vari-
ables in T and E then we may infer B from A and A from B.

(a)(a) -+ (@)(I' = E) 3 (T = E)

successive applications of 8

(a)(a) -+ (@a)(T = E)  hyp

r=E mod pon

XVI follows from the rule of substitution.

If F A 3 B and « does not occur free in A then |- A 3 (a)B.
A 3B hyp
(e)(A 3 B) gen
(e)(A 3 B) 3 (A 3 (@)B), where as above. 22
A 3 (a)B mod pon

If - A 3 B and « does not occur free in B then | (3a)A 3 B.
Proof like XVII, using 23 instead of 22.

F @a)OA 3 OHa)A.
A 3 (o)A 16
OA 3 OFa)A VI
Ha)OA 3 O@a)A XVIII



38.

39.

40.

41.

42,

43.

45.

RUTH C. BARCAN

F a)OA = O(3a)A.
() O0A 3 CE)A(OE)A 3 @)OA) 37, 11, adj
Ha)OA = O3@A def

F @~O~A 5 ~O~(a)A.
Ha)O~A = O(da)~A 38
~(@~O~A = O~(a)~~A 13, subst
~~(a)~O~ A = ~O~(a)~~A XI
()~O~A = ~O~(a)A 12.3, subst

F O(@A 3 (a)OA.
()A 3 A 8
O@A 3 OA VI
@A 3 ()OA XVII

[ (@)A 3 (B)B, where no free occurrence of « in A is in a well-formed
part of A of the form (B)T, B is formed from A by replacing all free
occurrences of « in A by 8, and there is no free occurrence of 8 in A.
()A 3 B 8
()A 3 (B)B  XVII

| (@)A = (8)B, where as in 41.
(A 3 (BB 41
(B)B 3 (w)A 41
()A = (B)B adj and def

F (3a)A = (dB)B, where as in 41.
(e)~A = (B)~B 42
~()~A = ~@)~B XI
(o)A = (AB)B 13, subst

F (2)(A = B) 3 (Ex)A = (Ja)B).
(@)(A 3 B) 3 (A 3 Fa)B) 25
(@)(B 3 A) 3 ((x)B 3 (Ax)A) 25
((e)(A 3 B) (@)(B 3 4)) 3 (x)A 3 (a)B)((Fa)B 3 Ga)ﬁ
(@)((A 3 B)(B 3 4)) 3 ((Hx)A 3 (3o)B)((@x)B 3 (Ha)A))
29, subst
(0)(A = B) 3 (Ha)A = (Ja)B) def

F (A 3 (¢)B) 3 (@)(A 3 B), where « is not free in A.
Ha)(A ~B) 3 ((Ha)A (Ha)~B) 27
(a)(A ~B) 3 (A (Ha)~B) 21, subst
(da)(A ~B) 3 (A ~(a)~~B) 13, subst
(da)(A ~B) 3 (A ~(a)B) 12.3, subst
~(A~(a)B) 3 ~(Fa)(A~B) X
(A D (0)B) 3 ~(Ha)~(A D B) 14.12, subst
~O~(A D (@)B) 3 ~O~(a)(A D B) 13, subst, VII
~O~(A D (@)B) 3 ()~O~(A D B) 39, subst
(A 3 ()B) 3 (@)(A 3 B) 18.7, subst
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46. F (A 3 (¢)B) = ()(A 3 B), where a is not free in A.
((A 3 (@)B) 3 (a)(A 3 B))((2)(A 3 B) 3 (A 3 (0)B)),
where as above. 22, 45, adj
(A 3 (0)B) = (2)(A 3 B) def

47. F 3a)(B 3 A) 3 ((@)B 3 A), where a is not free in A.
(@)(B ~A) 3 (B ~A) 8
((e)B (a)~A) 3 (B ~A) 29, subst
((e)B ~A) 3 (B ~A) 20, subst
O((@)B~4A) 3 O(B~4A) VI
~OB ~A) 3 ~O(9)B ~4) X
Ha)~O B ~4) 3 ~O((@)B ~4)  XVIII
(Fa)(B 3 A) 3 ((@)B 3 4) def

48, F 3a)(A 3 B) 3 (A 3 (3a)B), where « is not free in A.
B 3 (da)B 16
~(Ha)B 3 ~B X
(~@x)B 3 ~B) 3 ((A ~(3Fa)B) 3 (A ~B))
196, 12.15, subst
(A ~(Ha)B) 3 (A ~B) mod pon
O(A ~(Fa)B) 3 O(A ~B) VI
~O(A ~B) 3 ~O(A ~EHe)B) X
Ba)~O(A ~B) 3 ~O(A ~(Ha)B) XVIII
(Ha)(A 3 B) 3 (A3 (Ha)B)  def

The above two theorems can be regarded as special cases of the more general
principle (Fa)~O~A 3 ~O~(Fa)A.® Their converses are not provable,

49. F @a)(A 3 B) 3 ((0)A 3 (Ha)B).
~(Hae)B 3 ~B step 2 of 48
()A 3 A 8
(A ~Fe)B) 3 (A ~B) IX
O((@A ~Fa)B) 3 O(A ~B) VI
~O(A ~B) 3 ~O((@)A ~Fa)B)  XI
()~ (A ~B) 3 ~O((@)A ~(da)B) XVIII
Fa)(A 3 B) 3 (@A 3 (Ha)B)  def

50. F (@)(B 3 A) 3 (()B 3 A.
()B 3 B 8
((@)B 3 B) 3 (((@)B~A) 3 (B~ 4) 196
((a)B ~A) 3 (B ~A) mod pon
O((@B ~A) 3 O(B~A) VI
~OB ~4) 3 ~O(@)B ~A) XI
(@)~ (B ~A) 3 ()~O((@)B ~A) XIII
(@)~O((@)B ~A) 3 ~O((0)B ~4) 8
(@~O (B ~A) 3 ~O((e)B~4)  VII
(@)(B 3 A) 3((@)B-34) def

8 (Ha)~O~A 3 ~O~ (Ja)A follows easily from 40.
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52,

53.

54.

55.

56.

57.
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F (e)(A v B) = (A v ()B), where a is not free in A.
((@)A v (0)B) 3 (@)(A v B) 36
(A v (0)B) 3 (a)(A v B), where etc. 20, subst
Lemma:’ | (a)(I' D E) 3 (T D (a)E) where « is not free in T.
(@)(T D E) 3 ((o)T D (a)E) 9
()(T D E) 3 (I' D (a)E) 20, subst
()(~A D B) 3 (~A D (a)B) Lemma
()(A v B) 3 (A v (0)B) 14.2, subst
((e)(A v B) 3 (A v (0)B)((A v (0)B) 3 (a)(A v B) adj
()(A v B)=(A v (a)B) def

F(@)(A v B) 3 ((0)A v (3)B).
Lemma: | (@)(A D B) 3 ((Ha)A D (a)B).
Like 25 using 9 instead of 19.
(&)(~A D B) 3 (Ha)~A D (da)B) Lemma,
(0)(A v B) 3 (~(Ha)~A v (Ha)B) 14.12, 12.3, subst
()(A v B) 3 (()A v Ha)B) def

[ (A (3a)B) = (3a)(AB), where a is not free in A.
()(~A v ~B) = (~A v (a)~B), where etc. 51
(a)~(~~A ~~B) = ~(~~A ~(a)~B) def
(@)~(AB) = ~(A ~(a)~B) 12.3, subst
~(a)~(AB) = ~~(A ~(a)~B) XI
(Ha)(AB) = (A (3a)B) 12.3, subst, 13

F (@~OA 3 (a)(A 3 B).
~OA 3 (A 3B) 1974
(@)~OA 3 (0)(A 3 B) XIII

F~O0@ax)A 3 (0)(A 3 B).
(@~OQA 3 (a)(A 3 B) 54
~Ha)~~OA 3 (a)(A 3 B)  def
~@a)OA 3 (a)(A 3 B)  12.3, subst
~OEa)A 3 (@)(A 3 B) 38, subst

F~O~(@A 3 ()(B 3 A).
~O~A 3 (B 3A) 1975
(@)~O~A 3 (0)(B 3 A) XIII
~O~(a)A 3 ()(B 3 A) 39, subst

F ~OEx)(AB) 3 (e)(A 3 ~B).
~O(@a)(AB) 3 ~O(da)(AB) 12.1
~OHa)(AB) 3 ~(da)O(AB) 38, subst
~O(da)(AB) 3 ~(Fa)~(A 3 ~B) def, 12.3, subst
~Q(Ha)(AB) 3 (e)(A 3 ~B)  def

7 This Lemma might have been used as an axiom schema in place of 9 and 10.
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59.

60.
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F@@A3@BvI)=~O~Bv (a)(ADTI)), where « is not free
in B.
(@~O(A~B v D) = (@~O(A~(B v ) 12.11
(@~OA ~(B v I) = (~O~(~A v ~~(B v I)
14.21, subst
(@~O(A~(B v ) = (a)~O~(~A v (Bv )
12.3, subst
(@~O(A~B v ) = ()~O~(B v (~A v )
18.41, subst
()~OUA ~B v D)= ~O~@(B v (~A v T)) 39, subst
(@)~OA~BvVvI))=~O~B vV ()(~A Vv I) 51, subst
@WA3BvDID))=~O~BvV ((ADI)) def, 14.2, subst

F ((@)(A3B) (@B 3T1)) 3 («)(A37).
(A3BB3D) 3431 5
(@)((A 3 B)(B 3T)) 3 (a)(A3T) XIII
((@)(A 3 B) (@)(B3T)) 3 (x)(A3T)) 29, subst

F ((@)(A 3 B) T') 3 E, where T is the result of replacing all free occur-
rences of « in A by 8, and & does not occur in a well-formed part of
A 3 B of the form (8)H, and E is the result of replacing all free occur-
rences of « in B by 8.
Lemma: If F A 3 (B 3 I') then |- (AB) 3 T.
(A3(B3T) 3 ((BA) 3 (B(B3TI)))
196, 12.15, subst

m

A3(B3T) hyp

(BA) 3 (B(B 3 ) mod pon

(BB 3T) 3T 6

(AB) 3 T VIII, 12.15, subst
(«)(A 3 B) 3 (' 3 E), where as above. 8
(()(A 3 B)T) 3 E Lemma

59 and 60 are two instances of the syllogism in Barbara.

61.

62.

64.

F (()(A 3 B) (a)(A 3 T)) = (a)(A 3 (BI)).
((A3B)(A3T)) 3(A-3(BI)) 1963
()((A 3 B)(A 31) 3 (a)(A3(BT)) XIV
((@)(A 3 B) (@)(A 3 T)) 3 («)(A 3(BT)) 29, subst

F ((@(a 3 B) (3a)A) 3 (Ja)B.
()(A 3 B) 3 (o)A 3 (Ha)B) 25
((e)(A 3 B) (a)A) 3 (3x)B  Lemma of 60

F((@(A =B) (9)(B=T)) 3 (0)(A=T).
(A=B)B=T)3(A=T) 5, IX, def
Remainder of proof like 59.

F (@)(A = B) = (a)(~B = ~A).
Steps 1, 2 of XI, XTIV, and def.
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65.

66.

67.

68.

69.
70.

71.

RUTH C. BARCAN

F ((@(A 3 B) ~O~(0)a) 3 ~O~(a)B.
((A3B)~0O~A) 3 ~O~B 18.53
()((A 3 B) ~O~A) 3 (a)~O~B  XIII
(()(A 3 B) (@)~O~A) 3 (@)~O~B 29, subst
((@)(A 3 B) ~O~(a)A) 3 ~O~(a)B 39, subst
F ((@)(A 3 B) (@)OA) 3 (a)OB.
Like 65 using 18.51 instead of 18.53.

F (~O~(a)A (2)((AB) 3 T)) 3 (a)(B 3 ).
(~O~A((AB) 3T)) 3(B3T) 1861
(@) (~O~A((AB) 3T)) 3 (x)(B3T) XIII
(@~O~A ()((AB) 3T)) 3 (@)(B3T) 29, subst
(~O~(a)A (@)((AB) 3T)) 3 (a)(B3T) 39, subst
F(@a)OA v @a)0B) = @x)O(A v B).
(OCA v OB) = O(A v B) 19.82
H)(OA v OB) = Fa)O(A v B) Like proof of XIV.
() QA v (Fa)OB) = @ax)O(A v B) 33, subst

F(O@E)A v OH)B) = O3@a)(A v B). 68, subst, 38

F (~O~(@)A ~O~(a)B) 3 (a)(A = B).
Like 65 using 19.84 instead of 18.53.

F (~O@0A ~O@)B) 3 (@)(A = B).
(~OA~OB) 3 (A =B) 1983
((~OA ~OB) 3 (a)(A = B)  XIII
(()~OA (@)~OB) 3 (a)(A = B) 29, subst
(~@)~~OA ~Fa)~~OB) 3 (a)(A = B)  def
(~Ex)OA ~Ha)OB) 3 (a)(A = B) 12.3, subst
(~OFa)A ~O(Fa)B) 3 (a)(A = B) 38, subst

Definition: OA =41 ~O~A,

72.

F O(a)(ae) -« (@m)A = (ar)(ew) - - - (am)OA.
39, successive applications of subst.

The following theorems are not proved in Symbolic logic. Some of them will
be useful in proving XIX below.

73.

(A 3B)3(0ADOB).
(((A3B)OA) 3 OB) 3 (((A3B) OA) 3 OB) 121
(((A3B) O A) 30B) 3~0(((A3B) O A) ~{ B)) def
(((A 3 B) OA) 3 OB) 3 ~O((A 3 BY(OA ~OB))

12.5, subst
(((A 3 B) GA) 3 OB) 3 ((A 3 B) 3 ~(OA~OB))
def, 12.3, subst
(((A3B) OA) 3 OB) 3((A3B) 3(OADOB)  def
((A 3 B) OA) 3 OB 18.61
(A3B) 3(0ADOB) mod pon
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74. (A 3 B) 3 (O0A D 0OB).
Same method as 73 using 18.53 in place of 18.51.

75. F(A3B) 3 (~OBD~OA).
Same method as 73 using 18.5.

76. I (A= B) 3(0A= OB).
((A3B) 3(OADOB)(B 34 3(OBDOA) 73, ad
((A 3 B)(B 3 A) 3(OADOB)(OBDQA) 1968, mod pon
(A= B) 3 (0OA = OB)  def

77. [ (A = B) 3(OA= OB).
Like 76, using 74.

78. F(A=B) 3(~0A=~OB).
Like 76 using 75.

79. [ (A = B) = (~A = ~B). 12.1, 12.44, subst, 12.15, def

80. F (A = B)(I' = H)) 3 ((AT) = (BH)).
19.68, adj, IX, 12.5, 12.15, subst

81. I (A = B) 3 ((AT) = (BI)). 19.6, adj, 19.68, mod pon, def

82. O(A=B)=(A=B).
0(ADB) =(A3B) 187
OB DA =B34 187
(OADB OBDA) 3(A3B)(B=34) IX
O(A = B) = (A = B) 19.81, subst, def

Let every wif occurring in A, as well as A itself, be said to be within the scope
of the left-hand diamond in the expression (A. An ‘‘nth degree occurrence of
I'in A” will be an occurrence of I' which falls within the scope of not more than
n diamonds in A. Abbreviate A as [0°A and O™ A as O"A.

XIX. If the wif’s T, E, B are such that B results from A by the substitution of E
for zero or more nth degree occurrences of I'in A and if &y, a2, -+, am is a com-
plete list of the free variables in I' and E, then

F O" (a)(a) -+ (@a)(T = E) 3 (A = B).
Proof by induction on n. When = is zero XIX becomes
F (a1)(az) -+ - (am)(I' = E) 3 (A = B), where as above,

which we will call XIX,.
XIX, is provable by an induction on the number of occurrences of the primi-
tive symbols ~, -, (A ), O in A.
Suppose the number of occurrences of these symbols in A is zero. Then,
XIX, is one of the following:
1). F (en) () - -+ (am)(T
(2). F (e)(a) -+ (am)(T

E)
A).

E) 3 (T
E) 3 (A
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Case (1) is provable by successive applications of 8 and VIII.

Case (2). F~O(A~A) 3 ((A~A) 3 ~(ar)(ae) -+ (am)(I = E))
19.74
F~O(A ~A) 18.8
F (e)(eg) -+ (am)(I' = E) 3 ~(A ~A)
mod pon, X, 12.3, subst
F(e)(az) -+ (@m)(I' = E) 3 (ADA)  def
F O(a)(ee) -+ (2a)(T = E) 3 O(A = 4A)
VII, 12.7, def, subst
F(e)(ag) -+ (am)(T = E) 3 (A = A) 72, 82, subst

Assume that XIX, is true when A contains not more than ¢ occurrences of ~;,
, (3 ),and {. If A contains 7 4 1 of these symbols it must be ~A;, A;- A,
(Ha)A; or OA;. XIX,; becomes correspondingly

(1.1). F (a)(a) -+ (am)(T = E) 3 (~A; = ~By),
(2.1). F (a)(a) -+ (am)(T = E) 3 ((A1-42) = (Bi-By)),
(3.1). F (a)(a) -+ (am)(T = E) 3 (o)A = (Ja)By),
(4.1). F (a)(a) -+ (am)(T = E) 3 (OA1 = OBy,

where B; and B, result from the substitution of E for zero or more zero degree
occurrences of I' in A; and A, respectively.
The following proof assumes that T is not identical with A. If it is, the proof

is the same as Case (1) above. Where I' does not occur in A the proof is like
that of Case (2).

Case (1.1) follows immediately from the hypothesis, 79, and subst.

Case (2.1). F (a)(a) -+ (am)(I' = E) 3 (A, = By) hyp
F(e)(e2) -+ (@m)(I = E) 3 (A; = By)  hyp
F (e)(az) -+ (am)(T' = E) 3 ((A1 = By) (A2 = By)) XII
F (a)(az) <+ (am)(I' = E) -3 ((A1-4;) = (B1-By) 80, VIII

Case 3.1). | (a1)(e2) -+ (am)(I' = E) 3 (A; = By) hyp
F (er)(a) -+ (@m)(I' = E) 3 (¢)(Ar = B))  hyp, XIII
()(Ar = B) 3 (Ha)A; = Ha)B) 44
(a)(ag) -+ (@m)(T' = E) 3 (Fa)A; = (Ha)B)) VIII

Case (4.1). On the hypothesis n is zero, no occurrence of T' in A is replaced
by E. This case then becomes

F (e)(ez) -+ - (@m)(I' = E) 3 (O At
Proof like Case (2).

Suppose XIX is provable for n = k. We shall then prove it for n = &k + 1.
We will assume that T is not identical with A and that it occurs in A. If I'is
identical with A the proof is like Case 1) using in addition, successive applications
of 18.42. If T does not occur in A the proof is like Case (2), using
0" (a)(@) - -+ (@n)(I' = E) in place of (a1)(e) -+ (am)(T' = E).

First it is necessary to prove the case where A is QA;, Bis {B;, and where

QA
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A, results from B; by replacing by E zero or more kth degree occurrences of T
in A. The other cases follow from an induction on the number of “additional
occurrences” in A. An “additional occurrence” in A is an occurrence (of a
primitive symbol) which is not part of a wff in A of the form OH.

Case (1.2). F O%a)(a) -+ (em)(I' = E) 3 (A1 = B)  hyp
F O%an)(aw) -+ (@m)(@ = E) 3 (OA = OB) VI
F OO0 () -+ - (@n)(T = E) 3 0(0A) = OB) VI
F O (o)(aw) - - - (am)(T = E) 3 (O = OBy
def, 72, 82, subst

Case (1.2) is the proof of XIX for zero additional occurrences of the primitive
symbols in A. Suppose XIX is true for not more than < additional occurrences
of the primitive symbols in A. We will now show that it is true for z + 1 addi-
tional occurrences.

If A contains ¢ + 1 additional occurrences it must be ~A1, Ai- A, , or (Ha)A; .
XIX becomes correspondingly

(1.3). F O () () - - - (@n)(I = E) 3 (~A = ~By),
(23). F O (a)(as) -+ (@m)(I' = E) 3 ((A1-A2) = (Bi-B),
(33). F O*Y(a)(e) -+ ()T = E) 3 (@)A1 = @a)By),

where B; and B, result from the substitution of E for zero or more k + 1 degree
occurrences of I' in A; and A, respectively.

The proofs of (1.3), (2.3), and (3.3) are like those of Cases (1.1), (2.1), and
(3.1) replacing (a1)(az) - -+ (am)(T' = E) by O™ (an) () - -+ (am)(T = E).

The addition of the following axiom schema, O QA 3 OA, would make it
possible to obtain 1CJA = A and hence to prove XIX* as follows:

XIX*. If the wif’s T, E, and B are such that B results from A by the substitu-
tion of E for zero or more occurrences of I'in A and if a1, a2, -+ +, am
is a complete list of the free variables in and E then

F (@)(e) -+ (an)(T = E) 3 (4 = B).

The assumption ) QA 3 QA is the distinctive feature of S4° in contrast to
§2, and if it were included in the present system we could prove XIX* and thus
dispense with a consideration of the “degree” of occurrence of I'in A.

It might be interesting to note some of the differences between this system
and the ordinary functional calculus of first order.
The converses of 47 and 48,

((¢)B 3 A) 3 (Ja)(B 3 A), where « is not free in A,
((A 3 (3a)B) 3 (Ha)(A 3 B), where « is not free in A,

8 See Lewis and Langford, p. 501.
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are not provable although their analogues hold in a functional calculus based on

material implication.
The theorems corresponding to the so-called paradoxes of material implication

such as
~Ha)A 3 (a)(A 3 B)
are not provable. However we can derive
~OEa)A 3 (a)(A 3 B).
Theorems like
(@)(A3(BvTI)3(x)(A3B) v Hx(AT))
depend on some such principle as
(A3(BvTI)3(A3B)v (A37),

which is not available in S2.
We cannot derive

(@A 3@BvTI)=(Bv (2)(A 3 TI), where « is not free in B,
although
(@A 3BvI)=~O~B vV (a)(A D)), where ete.
is a theorem.’

SILVER SPRING, MARYLAND

I'am indebted to Professor Frederic B. Fitch for his criticisms and suggestions.
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