Hamilton College
Russell Marcus
rmarcus1@hamilton.edu

Class 26: Translation, Predicate Logic II (§8.1)

I. Scope and Binding

Compare:
$(\mathrm{x})(\mathrm{Px} \supset \mathrm{Qx})$
Every P is Q
(x)Px $\supset \mathrm{Qx}$
If everything is P, then x is Q

The scope of the quantifier is whatever term follows immediately.
If what follows the quantifier is a bracket, then whatever occurs until that bracket is closed is in the scope of the quantifier.
If what follows the quantifier is a negation, then everything negated is in the scope of the quantifier.
Quantifiers bind every instance of their variable in their scope.
So, in the first wff of this section, the ' x ' in ' Qx ' is bound.
In the second wff, the ' x ' in ' Qx ' is not bound.
Binding will become extremely important once we get to derivations, especially once we get to relational predicates (§8.6).
Examples of unbound terms
(x) $\mathrm{Px} \vee \mathrm{Qx} \quad$ ' Qx ' is not in the scope of the quantifier, so is unbound.
$(\exists \mathrm{x})(\mathrm{Px} \vee \mathrm{Qy})$ ' Qy ' is in the scope of the quantifier, but ' y ' is not the quantifier variable, so is unbound.

II. Many propositions contain more than two predicates

Examples with more than one predicate in the subject part:
Some wooden desks are uncomfortable: $\quad(\exists x)[(W x \cdot D x) \cdot U x]$
All wooden desks are uncomfortable:

$$
\text { (x) }[(\mathrm{Wx} \cdot \mathrm{Dx}) \supset \mathrm{Ux}]
$$

Examples with more than one predicate in the attribute part:
Many applicants are untrained or inexperienced: $\quad(\exists x)[A x \cdot(U x \vee I x)]$
All applicants are untrained or inexperienced:
(x)[Ax $\supset(\sim \mathrm{Tx} \vee \sim \mathrm{Ix})]$

Start by asking whether the sentence is universal or existential.
Then, it is often helpful to think of a sentence in terms of the ordinary rules of subject-predicate grammar.
What are we talking about?
What are we saying about it?
The 'what we are talking about' goes as the antecedent in the universally quantified statement, and as the first conjunct in the existentially quantified statement.
The 'what we are saying about it' goes as the consequent or as the second conjunct.

Examples using 'only':
Note that 'only' inverts the antecedent and consequent.
Only men have been presidents: $\quad(\mathrm{x})(\mathrm{Px} \supset \mathrm{Mx})$
That is, if something has been a president, it must have been a man, since all presidents have been men.
Only famous men have been presidents:
Only intelligent students understand Kant:

$$
\begin{aligned}
& (\mathrm{x})[(\mathrm{Px} \cdot \mathrm{Mx}) \supset \mathrm{Fx}] \quad \text { or } \quad(\mathrm{x})[(\mathrm{Px} \supset(\mathrm{Mx} \cdot \mathrm{Fx})] \\
& (\mathrm{x})[(\mathrm{Sx} \cdot \mathrm{Kx}) \supset \mathrm{Ix}]
\end{aligned}
$$

III. Some sentences contain more than one quantifier

If anything is damaged, then everyone in the house complains: $\quad(\exists \mathrm{x}) \mathrm{Dx} \supset(\mathrm{x})[(\mathrm{Ix} \cdot \mathrm{Px}) \supset \mathrm{Cx}]$ Either all the gears are broken, or a cylinder is missing:
IV. Exercises A. Translate each sentence into predicate logic.

1. Some jellybeans are tasty. (Jx, Tx)
2. Some black jellybeans are tasty. (Jx, Bx, Tx)
3. No green jellybeans are tasty. (Gx, Jx, Tx)
4. Some politicians are wealthy and educated. ($\mathrm{Px}, \mathrm{Wx}, \mathrm{Ex}$)
5. All wealthy politicians are electable. (Wx, Px, Ex)
6. If all jellybeans are black then no jellybeans are red. ($\mathrm{Jx}, \mathrm{Bx}, \mathrm{Rx}$)
7. If everything is physical then there are no ghosts. (Px, Gx)
8. Some one walked the dog, but no one washed the dishes. (Px, Wx, Dx)
9. Everyone can go home only if all the work is done. (Px, Gx, Wx, Dx)
V. Exercises B. Translate each sentence into predicate logic.
10. All mice are purple. (Mx, Px)
11. No mice are purple.
12. Some mice are purple.
13. Some mice are not purple.
14. Snakes are reptiles. (Sx, Rx)
15. Snakes are not all poisonous. (Sx, Px)
16. Children are present. (Cx, Px)
17. Executives all have secretaries. (Ex, Sx)
18. Only executives have secretaries.
19. All that glitters is not gold. (Gx, Ax)
20. Nothing in the house escaped destruction. (Hx, Ex)
21. Blessed is he that considers the poor. (Bx, Cx)
22. Some students are intelligent and hard working. (Sx, Ix, Hx)
23. He that hates dissembles with his lips, and lays up deceit within him. (Hx, Dx, Lx)
24. Everything enjoyable is either illegal, immoral, or fattening. (Ex, Lx, Mx, Fx)
25. Some medicines are dangerous if taken in excessive amounts. (Mx, Dx, Tx)
26. Some medicines are dangerous only if taken in excessive amounts.
27. Victorian houses are attractive (Vx, Hx, Ax)
28. Slow children are at play. ($\mathrm{Sx}, \mathrm{Cx}, \mathrm{Px}$)
29. Any horse that is gentle has been well-trained. (Hx, Gx, Wx)
30. Only well-trained horses are gentle.
31. Only gentle horses have been well-trained.
32. A knowledgeable, inexpensive mechanic is hard to find. ($\mathrm{Kx}, \mathrm{Ex}, \mathrm{Mx}, \mathrm{Hx}$)
33. Dogs and cats chase birds and squirrels. ($\mathrm{Dx}, \mathrm{Cx}, \mathrm{Bx}, \mathrm{Sx}$)
34. If all survivors are women, then some women are fortunate. (Sx, Wx, Fx)
35. Some, but not all, of us got away. (Ux, Gx)
36. If all ripe bananas are yellow, then some yellow things are ripe. ($\mathrm{Rx}, \mathrm{Bx}, \mathrm{Yx}$)
37. If any employees are lazy and some positions have no future, then some employees will not be successful. (Ex, Lx, Px, Fx, Sx)
38. No coat is waterproof unless it has been specially treated. (Cx, Wx, Sx)
39. A professor is a good lecturer if and only if he is both well-informed and entertaining. (Px, Gx, Wx, Ex)

VI. Solutions

Answers to Exercises A:

1) $(\exists x)(J x \cdot T x)$
2) $(\exists x)[(B x \cdot J x) \cdot T x)]$
3) $(\mathrm{x})[(\mathrm{Gx} \cdot \mathrm{Jx}) \supset \sim \mathrm{Tx}]$
or $\quad \sim(\exists \mathrm{x})[(\mathrm{Gx} \cdot \mathrm{Jx}) \cdot \mathrm{Tx}]$
4) $(\exists x)[\mathrm{Px} \cdot(\mathrm{Wx} \cdot \mathrm{Ex})]$
5) $(x)[(W x \cdot P x) \supset E x]$
$6)(\mathrm{x})(\mathrm{Jx} \supset \mathrm{Bx}) \supset(\mathrm{x})(\mathrm{Jx} \supset \sim \mathrm{Rx}) \quad$ or $\quad(\mathrm{x})(\mathrm{Jx} \supset \mathrm{Bx}) \supset \sim(\exists \mathrm{x})(\mathrm{Jx} \cdot \mathrm{Rx})$
6) (x) $\operatorname{Px} \supset \sim(\exists x) G x$
7) $(\exists x)(P x \cdot W x) \cdot \sim(\exists x)(P x \cdot D x)$
8) $(\mathrm{x})(\mathrm{Px} \supset \mathrm{Gx}) \supset(\mathrm{x})(\mathrm{Wx} \supset \mathrm{Dx})$

Answers to Exercises B:

1. (x)(Mx $\supset P x)$
2. (x$)(\mathrm{Mx} \supset \sim \mathrm{Px})$
3. $(\exists \mathrm{x})(\mathrm{Mx} \cdot \mathrm{Px})$
4. $(\exists \mathrm{x})(\mathrm{Mx} \cdot \sim \mathrm{Px})$
5. (x)(Sx $\supset \mathrm{Rx})$
6. $\sim(x)(S x \supset P x)$ or $(\exists x)(S x \cdot \sim P x)$
7. $(\exists \mathrm{x})(\mathrm{Cx} \cdot \mathrm{Px})$
8. (x) (Ex $\supset \mathrm{Sx})$
9. $(\mathrm{x})(\mathrm{Sx} \supset \mathrm{Ex})$
10. $\sim(\mathrm{x})(\mathrm{Gx} \supset \mathrm{Ax})$
11. (x) (Hx $\supset \sim E x)$
12. $(\mathrm{x})(\mathrm{Cx} \supset \mathrm{Bx})$
13. $(\exists \mathrm{x})[\mathrm{Sx} \cdot(\mathrm{Ix} \cdot \mathrm{Hx})]$
14. (x$)[\mathrm{Hx} \supset(\mathrm{Dx} \cdot \mathrm{Lx})]$
15. $(\mathrm{x})\{\mathrm{Ex} \supset[(\sim \mathrm{Lx} \vee \sim \mathrm{Mx}) \vee \mathrm{Fx}]$
16. $(\exists x)[M x \cdot(T x \supset D x)]$
17. $(\exists \mathrm{x})[\mathrm{Mx} \cdot(\mathrm{Dx} \supset \mathrm{Tx})]$
18. (x) $[(H x \cdot V x) \supset A x]$
19. $(\exists \mathrm{x})[(\mathrm{Cx} \cdot \mathrm{Sx}) \cdot \mathrm{Px}]$
20. (x)[(Hx $\cdot \mathrm{Gx}) ~ \supset \mathrm{Wx}]$
21. (x) $[(\mathrm{Hx} \cdot \mathrm{Gx}) \supset \mathrm{Wx}]$
22. (x) $[(\mathrm{Hx} \cdot \mathrm{Wx}) \supset \mathrm{Gx}]$
23. (x) $\{[(\mathrm{Kx} \cdot \sim \mathrm{Ex}) \cdot \mathrm{Mx}] \supset \mathrm{Hx}\}$
24. $(\mathrm{x})[(\mathrm{Dx} \vee \mathrm{Cx}) \supset(\mathrm{Bx} \cdot \mathrm{Sx})]$
25. (x$)(\mathrm{Sx} \supset \mathrm{Wx}) \supset(\exists \mathrm{x})(\mathrm{Wx} \cdot \mathrm{Fx})$
26. ($\exists \mathrm{x})(\mathrm{Ux} \cdot \mathrm{Gx}) \cdot \sim(\mathrm{x})(\mathrm{Ux} \supset \mathrm{Gx})$
27. (x$)[(\mathrm{Bx} \cdot \mathrm{Rx}) \supset \mathrm{Yx}] \supset(\exists \mathrm{x})(\mathrm{Yx} \cdot \mathrm{Rx})$
28. $[(\exists \mathrm{x})(\mathrm{Ex} \cdot \mathrm{Lx}) \cdot(\exists \mathrm{x})(\mathrm{Px} \cdot \sim \mathrm{Fx})] \supset(\exists \mathrm{x})(\mathrm{Ex} \cdot \sim \mathrm{Sx})$
29. $(\mathrm{x})[\mathrm{Cx} \supset(\sim \mathrm{Wx} \vee \mathrm{Sx})]$ or $(\mathrm{x})[\mathrm{Cx} \supset(\sim \mathrm{Sx} \supset \sim \mathrm{Wx})]$ or (x)[(Cx $\cdot \mathrm{Wx}) \supset \mathrm{Sx}]$ or $\sim(\exists \mathrm{x})(\mathrm{Cx} \cdot \mathrm{Wx} \cdot \sim \mathrm{Sx})$
30. (x) $\{\mathrm{Px} \supset[\mathrm{Gx} \equiv(\mathrm{Wx} \cdot \mathrm{Ex})]\}$
