Philosophy 240: Symbolic Logic
Hamilton College
Fall 2008
Russell Marcus
Mondays, Wednesdays, Fridays: 9am-9:50am
rmarcus1@hamilton.edu

Identity Theory Jigsaw Lesson
W orkgroup: At Least

I. Examine the following translations:

1. There is at least one applicant for the job. ($\exists \mathrm{x}) \mathrm{Ax}$
2. There are at least two applicants for the job. $\quad(\exists x)(\exists y)[A x \cdot A y \cdot x \neq y]$
3. There are at least three applicants for the job. $\quad(\exists x)(\exists y)(\exists z)[A x \bullet A y \bullet A z \bullet x \neq y \bullet x \neq z \bullet y \neq z]$
4. There are at least two odd prime numbers. $\quad(\exists x)(\exists y)(O x \bullet P x \bullet N x \bullet O y \bullet P y \bullet N y \bullet \sim x=y)$
5. There is at least one mouse bigger than Rene. ($\exists \mathrm{x})(\mathrm{Mx} \cdot \mathrm{Bxr})$
6. There are at least two mice bigger than Rene. $\quad(\exists \mathrm{x})(\exists \mathrm{y})(\mathrm{Mx} \cdot \mathrm{My} \bullet \mathrm{Bxr} \bullet \mathrm{Byr} \bullet \mathrm{x} \neq \mathrm{y})$
II. Try these:
7. There are at least three mice bigger than Rene.
8. There are at least four students in the course. (Sx, Cx)

Philosophy 240: Symbolic Logic
Hamilton College
Fall 2008
Mondays, Wednesdays, Fridays: 9am-9:50am

Identity Theory Jigsaw Lesson
 W orkgroup: At Least

I. Examine the following translations:

1. There is at least one applicant for the job. ($\exists \mathrm{x}) \mathrm{Ax}$
2. There are at least two applicants for the job. $\quad(\exists x)(\exists y)[A x \cdot A y \cdot x \neq y]$
3. There are at least three applicants for the job. $\quad(\exists x)(\exists y)(\exists z)[A x \cdot A y \cdot A z \bullet x \neq y \bullet x \neq z \bullet y \neq z]$
4. There are at least two odd prime numbers. $\quad(\exists x)(\exists y)(O x \bullet P x \bullet N x \bullet O y \bullet P y \bullet N y \bullet \sim x=y)$
5. There is at least one mouse bigger than Rene. $\quad(\exists \mathrm{x})(\mathrm{Mx} \cdot \mathrm{Bxr})$
6. There are at least two mice bigger than Rene. $\quad(\exists x)(\exists y)(M x \cdot M y \bullet B x r \bullet B y r \bullet x \neq y)$
II. Try these:
7. There are at least three mice bigger than Rene.
8. There are at least four students in the course. (Sx, Cx)
